{"title":"利用深度学习和功能注释增强基因表达预测。","authors":"Pratik Ramprasad, Jingchen Ren, Wei Pan","doi":"10.1002/gepi.22595","DOIUrl":null,"url":null,"abstract":"<p>Transcriptome-wide association studies (TWAS) aim to uncover genotype–phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the predicted expression for trait associations. Accurate gene expression prediction in stage 1 is crucial, as it directly impacts the power to identify associations in stage 2. Currently, the first stage of such studies is primarily conducted using linear models like elastic net regression, which fail to capture the nonlinear relationships inherent in biological systems. Deep learning methods have the potential to model such nonlinear effects, but have yet to demonstrably outperform linear methods at this task. To address this gap, we propose a new deep learning architecture to predict gene expression from genotypic variation across individuals. Our method utilizes a learnable input scaling layer in conjunction with a convolutional encoder to capture nonlinear effects and higher-order interactions without compromising on interpretability. We further augment this approach to allow for parameter sharing across multiple networks, enabling us to utilize prior information for individual variants in the form of functional annotations. Evaluations on real-world genomic data show that our method consistently outperforms elastic net regression across a large set of heritable genes. Furthermore, our model statistically significantly improved predictive performance by leveraging functional annotations, whereas elastic net regression failed to show equivalent gains when using the same information, suggesting that our method can capture nonlinear functional information beyond the capability of linear models.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22595","citationCount":"0","resultStr":"{\"title\":\"Enhancing Gene Expression Predictions Using Deep Learning and Functional Annotations\",\"authors\":\"Pratik Ramprasad, Jingchen Ren, Wei Pan\",\"doi\":\"10.1002/gepi.22595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transcriptome-wide association studies (TWAS) aim to uncover genotype–phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the predicted expression for trait associations. Accurate gene expression prediction in stage 1 is crucial, as it directly impacts the power to identify associations in stage 2. Currently, the first stage of such studies is primarily conducted using linear models like elastic net regression, which fail to capture the nonlinear relationships inherent in biological systems. Deep learning methods have the potential to model such nonlinear effects, but have yet to demonstrably outperform linear methods at this task. To address this gap, we propose a new deep learning architecture to predict gene expression from genotypic variation across individuals. Our method utilizes a learnable input scaling layer in conjunction with a convolutional encoder to capture nonlinear effects and higher-order interactions without compromising on interpretability. We further augment this approach to allow for parameter sharing across multiple networks, enabling us to utilize prior information for individual variants in the form of functional annotations. Evaluations on real-world genomic data show that our method consistently outperforms elastic net regression across a large set of heritable genes. Furthermore, our model statistically significantly improved predictive performance by leveraging functional annotations, whereas elastic net regression failed to show equivalent gains when using the same information, suggesting that our method can capture nonlinear functional information beyond the capability of linear models.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22595\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22595\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22595","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Enhancing Gene Expression Predictions Using Deep Learning and Functional Annotations
Transcriptome-wide association studies (TWAS) aim to uncover genotype–phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the predicted expression for trait associations. Accurate gene expression prediction in stage 1 is crucial, as it directly impacts the power to identify associations in stage 2. Currently, the first stage of such studies is primarily conducted using linear models like elastic net regression, which fail to capture the nonlinear relationships inherent in biological systems. Deep learning methods have the potential to model such nonlinear effects, but have yet to demonstrably outperform linear methods at this task. To address this gap, we propose a new deep learning architecture to predict gene expression from genotypic variation across individuals. Our method utilizes a learnable input scaling layer in conjunction with a convolutional encoder to capture nonlinear effects and higher-order interactions without compromising on interpretability. We further augment this approach to allow for parameter sharing across multiple networks, enabling us to utilize prior information for individual variants in the form of functional annotations. Evaluations on real-world genomic data show that our method consistently outperforms elastic net regression across a large set of heritable genes. Furthermore, our model statistically significantly improved predictive performance by leveraging functional annotations, whereas elastic net regression failed to show equivalent gains when using the same information, suggesting that our method can capture nonlinear functional information beyond the capability of linear models.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.