{"title":"用于综合分析微生物组研究中阿尔法多样性的混合效应核机器回归模型。","authors":"Runzhe Li, Mo Li, Ni Zhao","doi":"10.1002/gepi.22596","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Increasing evidence suggests that human microbiota plays a crucial role in many diseases. Alpha diversity, a commonly used summary statistic that captures the richness and/or evenness of the microbial community, has been associated with many clinical conditions. However, individual studies that assess the association between alpha diversity and clinical conditions often provide inconsistent results due to insufficient sample size, heterogeneous study populations and technical variability. In practice, meta-analysis tools have been applied to integrate data from multiple studies. However, these methods do not consider the heterogeneity caused by sequencing protocols, and the contribution of each study to the final model depends mainly on its sample size (or variance estimate). To combine studies with distinct sequencing protocols, a robust statistical framework for integrative analysis of microbiome datasets is needed. Here, we propose a mixed-effect kernel machine regression model to assess the association of alpha diversity with a phenotype of interest. Our approach readily incorporates the study-specific characteristics (including sequencing protocols) to allow for flexible modeling of microbiome effect via a kernel similarity matrix. Within the proposed framework, we provide three hypothesis testing approaches to answer different questions that are of interest to researchers. We evaluate the model performance through extensive simulations based on two distinct data generation mechanisms. We also apply our framework to data from HIV reanalysis consortium to investigate gut dysbiosis in HIV infection.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed-Effect Kernel Machine Regression Model for Integrative Analysis of Alpha Diversity in Microbiome Studies\",\"authors\":\"Runzhe Li, Mo Li, Ni Zhao\",\"doi\":\"10.1002/gepi.22596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Increasing evidence suggests that human microbiota plays a crucial role in many diseases. Alpha diversity, a commonly used summary statistic that captures the richness and/or evenness of the microbial community, has been associated with many clinical conditions. However, individual studies that assess the association between alpha diversity and clinical conditions often provide inconsistent results due to insufficient sample size, heterogeneous study populations and technical variability. In practice, meta-analysis tools have been applied to integrate data from multiple studies. However, these methods do not consider the heterogeneity caused by sequencing protocols, and the contribution of each study to the final model depends mainly on its sample size (or variance estimate). To combine studies with distinct sequencing protocols, a robust statistical framework for integrative analysis of microbiome datasets is needed. Here, we propose a mixed-effect kernel machine regression model to assess the association of alpha diversity with a phenotype of interest. Our approach readily incorporates the study-specific characteristics (including sequencing protocols) to allow for flexible modeling of microbiome effect via a kernel similarity matrix. Within the proposed framework, we provide three hypothesis testing approaches to answer different questions that are of interest to researchers. We evaluate the model performance through extensive simulations based on two distinct data generation mechanisms. We also apply our framework to data from HIV reanalysis consortium to investigate gut dysbiosis in HIV infection.</p>\\n </div>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22596\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22596","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A Mixed-Effect Kernel Machine Regression Model for Integrative Analysis of Alpha Diversity in Microbiome Studies
Increasing evidence suggests that human microbiota plays a crucial role in many diseases. Alpha diversity, a commonly used summary statistic that captures the richness and/or evenness of the microbial community, has been associated with many clinical conditions. However, individual studies that assess the association between alpha diversity and clinical conditions often provide inconsistent results due to insufficient sample size, heterogeneous study populations and technical variability. In practice, meta-analysis tools have been applied to integrate data from multiple studies. However, these methods do not consider the heterogeneity caused by sequencing protocols, and the contribution of each study to the final model depends mainly on its sample size (or variance estimate). To combine studies with distinct sequencing protocols, a robust statistical framework for integrative analysis of microbiome datasets is needed. Here, we propose a mixed-effect kernel machine regression model to assess the association of alpha diversity with a phenotype of interest. Our approach readily incorporates the study-specific characteristics (including sequencing protocols) to allow for flexible modeling of microbiome effect via a kernel similarity matrix. Within the proposed framework, we provide three hypothesis testing approaches to answer different questions that are of interest to researchers. We evaluate the model performance through extensive simulations based on two distinct data generation mechanisms. We also apply our framework to data from HIV reanalysis consortium to investigate gut dysbiosis in HIV infection.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.