Radek Sindelka, Ravindra Naraine, Pavel Abaffy, Daniel Zucha, Daniel Kraus, Jiri Netusil, Karel Smetana, Lukas Lacina, Berwini Beduya Endaya, Jiri Neuzil, Martin Psenicka, Mikael Kubista
{"title":"爪蟾尾部再生过程中再生启动细胞的特征。","authors":"Radek Sindelka, Ravindra Naraine, Pavel Abaffy, Daniel Zucha, Daniel Kraus, Jiri Netusil, Karel Smetana, Lukas Lacina, Berwini Beduya Endaya, Jiri Neuzil, Martin Psenicka, Mikael Kubista","doi":"10.1186/s13059-024-03396-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury.</p><p><strong>Results: </strong>In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration.</p><p><strong>Conclusion: </strong>RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.</p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":"251"},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of regeneration initiating cells during Xenopus laevis tail regeneration.\",\"authors\":\"Radek Sindelka, Ravindra Naraine, Pavel Abaffy, Daniel Zucha, Daniel Kraus, Jiri Netusil, Karel Smetana, Lukas Lacina, Berwini Beduya Endaya, Jiri Neuzil, Martin Psenicka, Mikael Kubista\",\"doi\":\"10.1186/s13059-024-03396-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury.</p><p><strong>Results: </strong>In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration.</p><p><strong>Conclusion: </strong>RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.</p>\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"251\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03396-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03396-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Characterization of regeneration initiating cells during Xenopus laevis tail regeneration.
Background: Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury.
Results: In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration.
Conclusion: RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.