V-pipe 3.0:用于样本内病毒遗传多样性估计的可持续管道。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Lara Fuhrmann, Kim Philipp Jablonski, Ivan Topolsky, Aashil A Batavia, Nico Borgsmüller, Pelin Icer Baykal, Matteo Carrara, Chaoran Chen, Arthur Dondi, Monica Dragan, David Dreifuss, Anika John, Benjamin Langer, Michal Okoniewski, Louis du Plessis, Uwe Schmitt, Franziska Singer, Tanja Stadler, Niko Beerenwinkel
{"title":"V-pipe 3.0:用于样本内病毒遗传多样性估计的可持续管道。","authors":"Lara Fuhrmann, Kim Philipp Jablonski, Ivan Topolsky, Aashil A Batavia, Nico Borgsmüller, Pelin Icer Baykal, Matteo Carrara, Chaoran Chen, Arthur Dondi, Monica Dragan, David Dreifuss, Anika John, Benjamin Langer, Michal Okoniewski, Louis du Plessis, Uwe Schmitt, Franziska Singer, Tanja Stadler, Niko Beerenwinkel","doi":"10.1093/gigascience/giae065","DOIUrl":null,"url":null,"abstract":"<p><p>The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, scaling to large sample sizes, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting 2 large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440432/pdf/","citationCount":"0","resultStr":"{\"title\":\"V-pipe 3.0: a sustainable pipeline for within-sample viral genetic diversity estimation.\",\"authors\":\"Lara Fuhrmann, Kim Philipp Jablonski, Ivan Topolsky, Aashil A Batavia, Nico Borgsmüller, Pelin Icer Baykal, Matteo Carrara, Chaoran Chen, Arthur Dondi, Monica Dragan, David Dreifuss, Anika John, Benjamin Langer, Michal Okoniewski, Louis du Plessis, Uwe Schmitt, Franziska Singer, Tanja Stadler, Niko Beerenwinkel\",\"doi\":\"10.1093/gigascience/giae065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, scaling to large sample sizes, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting 2 large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440432/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae065\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

下一代测序技术产生的病毒基因组数据集数量庞大、种类繁多,给计算数据分析工作流程带来了一系列挑战,包括严格的质量控制、扩展到大样本量以及针对特定应用的定制步骤。在此,我们介绍 V-pipe 3.0,这是一种专为分析短病毒基因组下一代测序数据而设计的计算管道。它的开发旨在实现病毒样本遗传多样性的可重复、可扩展、可调整和透明推断。通过介绍两个大型数据分析项目,我们展示了 V-pipe 3.0 在支持可持续病毒基因组数据科学方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V-pipe 3.0: a sustainable pipeline for within-sample viral genetic diversity estimation.

The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, scaling to large sample sizes, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting 2 large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信