鉴定牛蜱 Rhipicephalus (Boophilus) microplus 的性染色体和性别决定基因。

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Jason P Tidwell, Kylie G Bendele, Deanna Bodine, V Renee Holmes, J Spencer Johnston, Perot Saelao, Kimberly H Lohmeyer, Pete D Teel, Aaron M Tarone
{"title":"鉴定牛蜱 Rhipicephalus (Boophilus) microplus 的性染色体和性别决定基因。","authors":"Jason P Tidwell, Kylie G Bendele, Deanna Bodine, V Renee Holmes, J Spencer Johnston, Perot Saelao, Kimberly H Lohmeyer, Pete D Teel, Aaron M Tarone","doi":"10.1093/g3journal/jkae234","DOIUrl":null,"url":null,"abstract":"<p><p>Rhipicephalus (Boophilus) microplus is globally one of the most economically important ectoparasites of cattle costing the agriculture industry billions of dollars annually. Resistance to chemical control measures has prompted the development of novel methods of control. Recent advancements in genetic control measures for human and other animal vectors have utilized sex determination research to manipulate sex ratios, which have shown promising results in mosquitoes namely Aedes aegypti and Anopheles stephensi. Here, we use R. (B.) microplus as a model to provide foundational research to allow similar avenues of investigation in ticks using R. (B.) microplus as a model. Karyotypes for R. (B.) microplus show an XX:XO sex determining system with the largest chromosome being the sex chromosome. Using flow cytometric methods, the size of the sex chromosome was estimated at 526.91 Mb. All measures to identify the sex chromosome within the cattle tick genome assembly associated sex chromosomal characteristics to two chromosomes. This discrepancy between the assembly and karyotypes of the tick led to generating a new genome assembly with a single adult male specimen. The two chromosomes in question aligned with a single scaffold within the new genome that had a length of 513.29 Mb and was the first time the sex chromosome was identified in an Ixodid genome assembly.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the sex chromosome and sex determination genes in the cattle tick, Rhipicephalus (Boophilus) microplus.\",\"authors\":\"Jason P Tidwell, Kylie G Bendele, Deanna Bodine, V Renee Holmes, J Spencer Johnston, Perot Saelao, Kimberly H Lohmeyer, Pete D Teel, Aaron M Tarone\",\"doi\":\"10.1093/g3journal/jkae234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhipicephalus (Boophilus) microplus is globally one of the most economically important ectoparasites of cattle costing the agriculture industry billions of dollars annually. Resistance to chemical control measures has prompted the development of novel methods of control. Recent advancements in genetic control measures for human and other animal vectors have utilized sex determination research to manipulate sex ratios, which have shown promising results in mosquitoes namely Aedes aegypti and Anopheles stephensi. Here, we use R. (B.) microplus as a model to provide foundational research to allow similar avenues of investigation in ticks using R. (B.) microplus as a model. Karyotypes for R. (B.) microplus show an XX:XO sex determining system with the largest chromosome being the sex chromosome. Using flow cytometric methods, the size of the sex chromosome was estimated at 526.91 Mb. All measures to identify the sex chromosome within the cattle tick genome assembly associated sex chromosomal characteristics to two chromosomes. This discrepancy between the assembly and karyotypes of the tick led to generating a new genome assembly with a single adult male specimen. The two chromosomes in question aligned with a single scaffold within the new genome that had a length of 513.29 Mb and was the first time the sex chromosome was identified in an Ixodid genome assembly.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae234\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae234","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

Rhipicephalus (Boophilus) microplus 是全球经济上最重要的牛体外寄生虫之一,每年给农业造成数十亿美元的损失。对化学防治措施的抗药性促使人们开发新的防治方法。最近,针对人类和其他动物媒介的基因控制措施取得了进展,利用性别决定研究来操纵性别比例,在埃及伊蚊和史蒂芬按蚊中取得了很好的效果。在这里,我们使用 R. (B.) microplus 作为模型,提供基础研究,以便使用 R. (B.) microplus 作为模型对蜱进行类似的调查。R. (B.) microplus 的核型显示了一个 XX:XO 性别决定系统,其中最大的染色体是性染色体。利用流式细胞仪方法,性染色体的大小估计为 526.91 Mb。在牛蜱基因组组装中识别性染色体的所有措施都将性染色体特征与两条染色体相关联。牛蜱基因组组装与核型之间的这种差异导致了用一个成年雄性样本生成一个新的基因组组装。在新的基因组中,这两条染色体与一个长度为 513.29 Mb 的支架对齐,这也是首次在 Ixodid 基因组中发现性染色体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the sex chromosome and sex determination genes in the cattle tick, Rhipicephalus (Boophilus) microplus.

Rhipicephalus (Boophilus) microplus is globally one of the most economically important ectoparasites of cattle costing the agriculture industry billions of dollars annually. Resistance to chemical control measures has prompted the development of novel methods of control. Recent advancements in genetic control measures for human and other animal vectors have utilized sex determination research to manipulate sex ratios, which have shown promising results in mosquitoes namely Aedes aegypti and Anopheles stephensi. Here, we use R. (B.) microplus as a model to provide foundational research to allow similar avenues of investigation in ticks using R. (B.) microplus as a model. Karyotypes for R. (B.) microplus show an XX:XO sex determining system with the largest chromosome being the sex chromosome. Using flow cytometric methods, the size of the sex chromosome was estimated at 526.91 Mb. All measures to identify the sex chromosome within the cattle tick genome assembly associated sex chromosomal characteristics to two chromosomes. This discrepancy between the assembly and karyotypes of the tick led to generating a new genome assembly with a single adult male specimen. The two chromosomes in question aligned with a single scaffold within the new genome that had a length of 513.29 Mb and was the first time the sex chromosome was identified in an Ixodid genome assembly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信