Rakib Howlader, Md Mahabub Arefin Chowdhury, Chowdhury Sarwar Jahan, Md Arif Hossain, Md Ferozur Rahaman, Bakul Kumar Ghose, Monirul Islam
{"title":"利用遥感和地理信息系统方法划定孟加拉国西南部盐碱沿海含水层的淡水地下水潜力区。","authors":"Rakib Howlader, Md Mahabub Arefin Chowdhury, Chowdhury Sarwar Jahan, Md Arif Hossain, Md Ferozur Rahaman, Bakul Kumar Ghose, Monirul Islam","doi":"10.1007/s10653-024-02237-3","DOIUrl":null,"url":null,"abstract":"<p><p>Bay of Bengal in southern Bangladesh is a major source of water from coastal aquifers, but prone to contamination by seawater intrusion, making climate-vulnerable populations and economies unfit for potable, agricultural water, adopting crops, etc. The study area located in Khulna district lies in the southwestern coast of the country is among the most vulnerable due to its salinity issues. Therefore, this study identified fresh groundwater potential zones in the southwestern coastal zones of the country suited for community usage helping coastal peoples meet their demands. This study focused on twelve thematic layers employing remote sensing and GIS with analytical hierarchy process. Here, groundwater salinity is 84% brackish to saline over 70% of the region [electric conductivity: 295-16,295 micro-Siemens/cm]. However, groundwater chloride in 88% signifies a slightly to medium salty zone. The annual average rainfall reduced surface water infiltration in 75% of the area with little to very slightly soil salinity. The fresh groundwater resource zone has classified based on its potentiality as: very high (0.52%)-for drinking, agricultural irrigation, or industrial work; high (25%)-marginal salinity suitable for agricultural or industrial uses; low (11%)-low salinity, but usable for high salt tolerant crops in irrigation; and very low (64%)-very high groundwater salinity, and not suitable for human consumption and community uses. Finally, this study will help develop sustainable groundwater resources in the coastal region and a fresh groundwater supply plan in saline-prone areas.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"454"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineation of fresh groundwater potentiality zones in saline coastal aquifers, Southwest Bangladesh using remote sensing and GIS approaches.\",\"authors\":\"Rakib Howlader, Md Mahabub Arefin Chowdhury, Chowdhury Sarwar Jahan, Md Arif Hossain, Md Ferozur Rahaman, Bakul Kumar Ghose, Monirul Islam\",\"doi\":\"10.1007/s10653-024-02237-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bay of Bengal in southern Bangladesh is a major source of water from coastal aquifers, but prone to contamination by seawater intrusion, making climate-vulnerable populations and economies unfit for potable, agricultural water, adopting crops, etc. The study area located in Khulna district lies in the southwestern coast of the country is among the most vulnerable due to its salinity issues. Therefore, this study identified fresh groundwater potential zones in the southwestern coastal zones of the country suited for community usage helping coastal peoples meet their demands. This study focused on twelve thematic layers employing remote sensing and GIS with analytical hierarchy process. Here, groundwater salinity is 84% brackish to saline over 70% of the region [electric conductivity: 295-16,295 micro-Siemens/cm]. However, groundwater chloride in 88% signifies a slightly to medium salty zone. The annual average rainfall reduced surface water infiltration in 75% of the area with little to very slightly soil salinity. The fresh groundwater resource zone has classified based on its potentiality as: very high (0.52%)-for drinking, agricultural irrigation, or industrial work; high (25%)-marginal salinity suitable for agricultural or industrial uses; low (11%)-low salinity, but usable for high salt tolerant crops in irrigation; and very low (64%)-very high groundwater salinity, and not suitable for human consumption and community uses. Finally, this study will help develop sustainable groundwater resources in the coastal region and a fresh groundwater supply plan in saline-prone areas.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"454\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02237-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02237-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Delineation of fresh groundwater potentiality zones in saline coastal aquifers, Southwest Bangladesh using remote sensing and GIS approaches.
Bay of Bengal in southern Bangladesh is a major source of water from coastal aquifers, but prone to contamination by seawater intrusion, making climate-vulnerable populations and economies unfit for potable, agricultural water, adopting crops, etc. The study area located in Khulna district lies in the southwestern coast of the country is among the most vulnerable due to its salinity issues. Therefore, this study identified fresh groundwater potential zones in the southwestern coastal zones of the country suited for community usage helping coastal peoples meet their demands. This study focused on twelve thematic layers employing remote sensing and GIS with analytical hierarchy process. Here, groundwater salinity is 84% brackish to saline over 70% of the region [electric conductivity: 295-16,295 micro-Siemens/cm]. However, groundwater chloride in 88% signifies a slightly to medium salty zone. The annual average rainfall reduced surface water infiltration in 75% of the area with little to very slightly soil salinity. The fresh groundwater resource zone has classified based on its potentiality as: very high (0.52%)-for drinking, agricultural irrigation, or industrial work; high (25%)-marginal salinity suitable for agricultural or industrial uses; low (11%)-low salinity, but usable for high salt tolerant crops in irrigation; and very low (64%)-very high groundwater salinity, and not suitable for human consumption and community uses. Finally, this study will help develop sustainable groundwater resources in the coastal region and a fresh groundwater supply plan in saline-prone areas.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.