SCIP:可扩展、可重现、开源的形态剖析图像细胞仪和显微镜数据管道。

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Maxim Lippeveld, Daniel Peralta, Andrew Filby, Yvan Saeys
{"title":"SCIP:可扩展、可重现、开源的形态剖析图像细胞仪和显微镜数据管道。","authors":"Maxim Lippeveld,&nbsp;Daniel Peralta,&nbsp;Andrew Filby,&nbsp;Yvan Saeys","doi":"10.1002/cyto.a.24896","DOIUrl":null,"url":null,"abstract":"<p>Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC <i>and</i> standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24896","citationCount":"0","resultStr":"{\"title\":\"SCIP: A scalable, reproducible and open-source pipeline for morphological profiling of image cytometry and microscopy data\",\"authors\":\"Maxim Lippeveld,&nbsp;Daniel Peralta,&nbsp;Andrew Filby,&nbsp;Yvan Saeys\",\"doi\":\"10.1002/cyto.a.24896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC <i>and</i> standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24896\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24896\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24896","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

成像流式细胞仪(IFC)可提供高采集率的单细胞成像数据。它越来越多地用于基于图像的分析实验,包括成百上千的多通道细胞图像。目前可用的显微镜数据处理软件解决方案可以为下游分析提供良好的结果,但在效率和可扩展性方面受到限制,而且往往不适合 IFC 数据。在这项工作中,我们提出了可扩展的细胞测量图像处理(SCIP),这是一种 Python 软件,可高效处理来自 IFC 和标准显微镜数据集的图像。我们还提出了一种有效存储 IFC 数据的文件格式。我们在两个大型显微镜数据集和一个 IFC 数据集上展示了我们的贡献,所有这些数据集都是公开的。我们的研究结果表明,SCIP 能以更短的时间和更可扩展的方式提取与其他工具相同的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCIP: A scalable, reproducible and open-source pipeline for morphological profiling of image cytometry and microscopy data

Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC and standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信