Renée Daams, Thi Thu Phuong Tran, Mohamed Jemaà, Wondossen Sime, Ruta Mickeviciute, Sara Ek, Lars Rönnstrand, Julhash U Kazi, Ramin Massoumi
{"title":"通过靶向抑制 Bcl-3 增强 B 细胞恶性肿瘤中的细胞死亡。","authors":"Renée Daams, Thi Thu Phuong Tran, Mohamed Jemaà, Wondossen Sime, Ruta Mickeviciute, Sara Ek, Lars Rönnstrand, Julhash U Kazi, Ramin Massoumi","doi":"10.1038/s41419-024-07067-w","DOIUrl":null,"url":null,"abstract":"<p><p>The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427694/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3.\",\"authors\":\"Renée Daams, Thi Thu Phuong Tran, Mohamed Jemaà, Wondossen Sime, Ruta Mickeviciute, Sara Ek, Lars Rönnstrand, Julhash U Kazi, Ramin Massoumi\",\"doi\":\"10.1038/s41419-024-07067-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07067-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07067-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
t(14;19)(q32;q13)是一种罕见的复发性易位,见于B细胞淋巴增生性恶性肿瘤,涉及Bcl-3基因。这种染色体易位通常出现在 50 岁以下的患者中,会导致病情更加进展。Bcl-3 基因编码一种属于 IκB 蛋白家族的蛋白质,它通过充当转录激活剂或抑制剂来严格调控 NFκB 信号转导。此前,我们开发了第二代Bcl-3抑制剂,可直接干扰Bcl-3信号通路,从而减少黑色素瘤细胞的增殖、侵袭和迁移。本研究旨在探讨 Bcl-3 抑制剂对 B 细胞淋巴瘤和白血病细胞的影响。研究发现,用这种抑制剂处理细胞会导致细胞增殖和存活率下降。此外,在 B 细胞恶性肿瘤细胞中抑制 Bcl-3 会导致线粒体膜电位和功能丧失,以及裂解的 Caspase 3 表达增加,这表明细胞死亡是通过内在凋亡途径发生的。治疗癌细胞后,cIAP1 蛋白 1(cIAP1)的表达减少,进一步证实了这一观察结果。鉴于目前在肿瘤学领域缺乏针对 Bcl-3 的临床进展,这为开发和研究针对 B 细胞恶性肿瘤的高度特异性治疗干预开辟了一条新途径。
Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3.
The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism