Carl Randall Harrell, Ana Volarevic, Valentin Djonov, Aleksandar Arsenijevic, Vladislav Volarevic
{"title":"微RNA在间充质干细胞调节肺纤维化中的作用","authors":"Carl Randall Harrell, Ana Volarevic, Valentin Djonov, Aleksandar Arsenijevic, Vladislav Volarevic","doi":"10.1177/09636897241281026","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241281026"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450564/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of MicroRNAs in Mesenchymal Stem Cell-Based Modulation of Pulmonary Fibrosis.\",\"authors\":\"Carl Randall Harrell, Ana Volarevic, Valentin Djonov, Aleksandar Arsenijevic, Vladislav Volarevic\",\"doi\":\"10.1177/09636897241281026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.</p>\",\"PeriodicalId\":9721,\"journal\":{\"name\":\"Cell Transplantation\",\"volume\":\"33 \",\"pages\":\"9636897241281026\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09636897241281026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241281026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The Role of MicroRNAs in Mesenchymal Stem Cell-Based Modulation of Pulmonary Fibrosis.
Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.
期刊介绍:
Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.