使用阿特劳胶原海绵作为支架,通过皮下胰岛移植逆转高血糖症

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Yumeng Wu, Tatsuya Yano, Takayuki Enomoto, Atena Endo, Seiji Okada, Kimi Araki, Nobuaki Shiraki, Shoen Kume
{"title":"使用阿特劳胶原海绵作为支架,通过皮下胰岛移植逆转高血糖症","authors":"Yumeng Wu, Tatsuya Yano, Takayuki Enomoto, Atena Endo, Seiji Okada, Kimi Araki, Nobuaki Shiraki, Shoen Kume","doi":"10.1177/09636897241277980","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived β cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241277980"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversal of Hyperglycemia by Subcutaneous Islet Engraftment Using an Atelocollagen Sponge as a Scaffold.\",\"authors\":\"Yumeng Wu, Tatsuya Yano, Takayuki Enomoto, Atena Endo, Seiji Okada, Kimi Araki, Nobuaki Shiraki, Shoen Kume\",\"doi\":\"10.1177/09636897241277980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived β cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.</p>\",\"PeriodicalId\":9721,\"journal\":{\"name\":\"Cell Transplantation\",\"volume\":\"33 \",\"pages\":\"9636897241277980\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09636897241277980\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241277980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

全球有 840 万人患有 1 型糖尿病(T1DM),患者主要依靠注射外源性胰岛素来维持血糖水平。通过门静脉进行胰岛移植可使对葡萄糖敏感的胰岛直接在体内释放胰岛素。然而,这种方法对于未来移植多能干细胞衍生的β细胞的细胞疗法可能并不可取,因为它面临着各种挑战,包括细胞回收困难和由于瞬间血液介导的炎症反应(IBMIR)造成的移植物损失。在这里,我们建立了一种使用阿特劳胶原海绵作为支架的皮下移植方案。虽然皮下移植有很多优点,但缺乏血管床限制了它的应用。为了解决这个问题,我们在移植部位使用明胶海绵(Spongel)吸收的 bFGF 刺激血管生成,显著改善了微血管面积。我们的体内实验还发现,血管生成刺激对于逆转链脲佐菌素(STZ)诱导的糖尿病小鼠的高血糖至关重要。除了血管生成治疗外,还使用了阿托胶原海绵来携带小鼠血小板,以避免移植渗漏。通过阿特劳胶原海绵输送 800 个小鼠血小板,STZ 诱导的糖尿病小鼠的高血糖症状得到逆转,糖耐量正常。它们的血糖正常值一直维持到移植物被移除。对收获的胰岛移植物进行的分析表明,其血管化程度高且形态保持完好,这表明使用阿特胶原海绵作为支架有助于保持胰岛移植物的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversal of Hyperglycemia by Subcutaneous Islet Engraftment Using an Atelocollagen Sponge as a Scaffold.

Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived β cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信