Peilin Shi, Yingying Du, Yunyan Zhang, Bo Yang, Qiujing Guan, Yiming Jing, Hao Tang, Jianguo Tang, Chunhui Yang, Xiaoli Ge, Shihui Shen, Lei Li, Chunrong Wu
{"title":"Bim的泛素依赖性降解可阻止巨噬细胞在脓毒症相关组织损伤中的脓毒症。","authors":"Peilin Shi, Yingying Du, Yunyan Zhang, Bo Yang, Qiujing Guan, Yiming Jing, Hao Tang, Jianguo Tang, Chunhui Yang, Xiaoli Ge, Shihui Shen, Lei Li, Chunrong Wu","doi":"10.1038/s41419-024-07072-z","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442472/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin-independent degradation of Bim blocks macrophage pyroptosis in sepsis-related tissue injury.\",\"authors\":\"Peilin Shi, Yingying Du, Yunyan Zhang, Bo Yang, Qiujing Guan, Yiming Jing, Hao Tang, Jianguo Tang, Chunhui Yang, Xiaoli Ge, Shihui Shen, Lei Li, Chunrong Wu\",\"doi\":\"10.1038/s41419-024-07072-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442472/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07072-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07072-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ubiquitin-independent degradation of Bim blocks macrophage pyroptosis in sepsis-related tissue injury.
Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism