Adrien Dufour , Ariane Heydari Olya , Sophie Foulon , Clémence Réda , Amazigh Mokhtari , Valérie Faivre , Jennifer Hua , Cindy Bokobza , Andrew D. Griffiths , Philippe Nghe , Pierre Gressens , Andrée Delahaye-Duriez , Juliette Van Steenwinckel
{"title":"新生儿炎症损害了与发育相关的小胶质细胞,并促进了高反应性小胶质细胞亚群的形成。","authors":"Adrien Dufour , Ariane Heydari Olya , Sophie Foulon , Clémence Réda , Amazigh Mokhtari , Valérie Faivre , Jennifer Hua , Cindy Bokobza , Andrew D. Griffiths , Philippe Nghe , Pierre Gressens , Andrée Delahaye-Duriez , Juliette Van Steenwinckel","doi":"10.1016/j.bbi.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>Microglia and border-associated macrophages play critical roles in both immunity and neurodevelopment. The disruption of microglial development trajectories by neonatal inflammation is an important issue in research on neurodevelopmental disorders (NDDs), as models have suggested a strong association between inflammation and cognitive deficits. Here, we explored by single-cell RNA sequencing and flow cytometry the impact of neonatal inflammation in a mouse NDD model on brain myeloid cell subsets. A specific subset of microglia expressing the complement receptor C5ar1 has been identified, in which inflammatory pathways are most strongly activated. Based on transcriptional similarity, this subset appears to originate from the most mature and “homeostatic“ microglia at this stage of development and demonstrated hypersensitivity to inflammation. Besides that, Spp1-microglia supporting oligodendrocyte differentiation, primitive and proliferative microglia were reduced by inflammation. These findings suggest major changes in microglial subsets developmental trajectories and reactivity contributing to NDDs induced by neonatal inflammation.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neonatal inflammation impairs developmentally-associated microglia and promotes a highly reactive microglial subset\",\"authors\":\"Adrien Dufour , Ariane Heydari Olya , Sophie Foulon , Clémence Réda , Amazigh Mokhtari , Valérie Faivre , Jennifer Hua , Cindy Bokobza , Andrew D. Griffiths , Philippe Nghe , Pierre Gressens , Andrée Delahaye-Duriez , Juliette Van Steenwinckel\",\"doi\":\"10.1016/j.bbi.2024.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microglia and border-associated macrophages play critical roles in both immunity and neurodevelopment. The disruption of microglial development trajectories by neonatal inflammation is an important issue in research on neurodevelopmental disorders (NDDs), as models have suggested a strong association between inflammation and cognitive deficits. Here, we explored by single-cell RNA sequencing and flow cytometry the impact of neonatal inflammation in a mouse NDD model on brain myeloid cell subsets. A specific subset of microglia expressing the complement receptor C5ar1 has been identified, in which inflammatory pathways are most strongly activated. Based on transcriptional similarity, this subset appears to originate from the most mature and “homeostatic“ microglia at this stage of development and demonstrated hypersensitivity to inflammation. Besides that, Spp1-microglia supporting oligodendrocyte differentiation, primitive and proliferative microglia were reduced by inflammation. These findings suggest major changes in microglial subsets developmental trajectories and reactivity contributing to NDDs induced by neonatal inflammation.</div></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889159124006238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Neonatal inflammation impairs developmentally-associated microglia and promotes a highly reactive microglial subset
Microglia and border-associated macrophages play critical roles in both immunity and neurodevelopment. The disruption of microglial development trajectories by neonatal inflammation is an important issue in research on neurodevelopmental disorders (NDDs), as models have suggested a strong association between inflammation and cognitive deficits. Here, we explored by single-cell RNA sequencing and flow cytometry the impact of neonatal inflammation in a mouse NDD model on brain myeloid cell subsets. A specific subset of microglia expressing the complement receptor C5ar1 has been identified, in which inflammatory pathways are most strongly activated. Based on transcriptional similarity, this subset appears to originate from the most mature and “homeostatic“ microglia at this stage of development and demonstrated hypersensitivity to inflammation. Besides that, Spp1-microglia supporting oligodendrocyte differentiation, primitive and proliferative microglia were reduced by inflammation. These findings suggest major changes in microglial subsets developmental trajectories and reactivity contributing to NDDs induced by neonatal inflammation.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.