Trong-Thanh Han, Kien Le Trung, Phuong Nguyen Anh, Phat Nguyen Huu
{"title":"利用复杂网络提取慢性阻塞性肺病特征的高性能方法","authors":"Trong-Thanh Han, Kien Le Trung, Phuong Nguyen Anh, Phat Nguyen Huu","doi":"10.1088/2057-1976/ad8093","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objectives</i>. The paper proposes a novel methodology for the classification of Chronic Obstructive Pulmonary Disease (COPD) utilizing respiratory sound attributes.<i>Methods</i>. The approach involves segmenting respiratory sounds into individual breaths and conducting extensive studies on this dataset. Spectral Transforms, various Wavelet Transforms are applied to capture distinct signal features. Complex Network is also employed to extract characteristic elements, generating novel representations of spectrogram data based on graph factors, including entropy, density, and position. The normalized and enriched data is then used to develop COPD classifiers using six machine learning algorithms, fine-tuning with appropriate training details and hyperparameter tuning.<i>Results</i>. Our results demonstrate robust performance, with ROC curves consistently exhibiting an Area Under the Curve (AUC) > 96% across different time-frequency transformations. Notably, the Random Forest algorithm achieves an AUC of 99.67%, outperforming other algorithms. Moreover, the Wavelet Daubechies 2 (Db2) consistently approaches 98% accuracy, particularly noteworthy in conjunction with the Naive Bayes algorithm.<i>Conclusion</i>. This study diagnosis patients through spectrogram images extracted from lung sounds. The application of Inverse Transforms, Complex Network, and Optimized Classification Algorithms yielded results beyond expectations. This methodology provides a promising approach for accurate COPD diagnosis, leveraging Machine Learning techniques applied to respiratory sound analysis.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance method for COPD features extraction using complex network.\",\"authors\":\"Trong-Thanh Han, Kien Le Trung, Phuong Nguyen Anh, Phat Nguyen Huu\",\"doi\":\"10.1088/2057-1976/ad8093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objectives</i>. The paper proposes a novel methodology for the classification of Chronic Obstructive Pulmonary Disease (COPD) utilizing respiratory sound attributes.<i>Methods</i>. The approach involves segmenting respiratory sounds into individual breaths and conducting extensive studies on this dataset. Spectral Transforms, various Wavelet Transforms are applied to capture distinct signal features. Complex Network is also employed to extract characteristic elements, generating novel representations of spectrogram data based on graph factors, including entropy, density, and position. The normalized and enriched data is then used to develop COPD classifiers using six machine learning algorithms, fine-tuning with appropriate training details and hyperparameter tuning.<i>Results</i>. Our results demonstrate robust performance, with ROC curves consistently exhibiting an Area Under the Curve (AUC) > 96% across different time-frequency transformations. Notably, the Random Forest algorithm achieves an AUC of 99.67%, outperforming other algorithms. Moreover, the Wavelet Daubechies 2 (Db2) consistently approaches 98% accuracy, particularly noteworthy in conjunction with the Naive Bayes algorithm.<i>Conclusion</i>. This study diagnosis patients through spectrogram images extracted from lung sounds. The application of Inverse Transforms, Complex Network, and Optimized Classification Algorithms yielded results beyond expectations. This methodology provides a promising approach for accurate COPD diagnosis, leveraging Machine Learning techniques applied to respiratory sound analysis.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad8093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad8093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
High performance method for COPD features extraction using complex network.
Objectives. The paper proposes a novel methodology for the classification of Chronic Obstructive Pulmonary Disease (COPD) utilizing respiratory sound attributes.Methods. The approach involves segmenting respiratory sounds into individual breaths and conducting extensive studies on this dataset. Spectral Transforms, various Wavelet Transforms are applied to capture distinct signal features. Complex Network is also employed to extract characteristic elements, generating novel representations of spectrogram data based on graph factors, including entropy, density, and position. The normalized and enriched data is then used to develop COPD classifiers using six machine learning algorithms, fine-tuning with appropriate training details and hyperparameter tuning.Results. Our results demonstrate robust performance, with ROC curves consistently exhibiting an Area Under the Curve (AUC) > 96% across different time-frequency transformations. Notably, the Random Forest algorithm achieves an AUC of 99.67%, outperforming other algorithms. Moreover, the Wavelet Daubechies 2 (Db2) consistently approaches 98% accuracy, particularly noteworthy in conjunction with the Naive Bayes algorithm.Conclusion. This study diagnosis patients through spectrogram images extracted from lung sounds. The application of Inverse Transforms, Complex Network, and Optimized Classification Algorithms yielded results beyond expectations. This methodology provides a promising approach for accurate COPD diagnosis, leveraging Machine Learning techniques applied to respiratory sound analysis.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.