早期肺癌患者立体定向体外放射治疗与微创手术的真实决策过程。

IF 7.5 1区 医学 Q1 SURGERY
Stijn Vanstraelen, Kay See Tan, Prasad S Adusumilli, Manjit S Bains, Matthew J Bott, Robert J Downey, Daniel R Gomez, Katherine D Gray, James Huang, James M Isbell, Daniela Molena, Bernard J Park, Andreas Rimner, Valerie W Rusch, Narek Shaverdian, Smita Sihag, Abraham J Wu, David R Jones, Gaetano Rocco
{"title":"早期肺癌患者立体定向体外放射治疗与微创手术的真实决策过程。","authors":"Stijn Vanstraelen, Kay See Tan, Prasad S Adusumilli, Manjit S Bains, Matthew J Bott, Robert J Downey, Daniel R Gomez, Katherine D Gray, James Huang, James M Isbell, Daniela Molena, Bernard J Park, Andreas Rimner, Valerie W Rusch, Narek Shaverdian, Smita Sihag, Abraham J Wu, David R Jones, Gaetano Rocco","doi":"10.1097/SLA.0000000000006552","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To generate a prediction model for selection of treatment modality for early-stage non-small cell lung cancer (NSCLC).</p><p><strong>Summary background data: </strong>Stereotactic body radiotherapy (SBRT) and minimally invasive surgery (MIS) are used in the local treatment of early-stage NSCLC. However, selection of patients for either SBRT or MIS remains challenging, due to the multitude of factors influencing the decision-making process.</p><p><strong>Methods: </strong>We analyzed 1291 patients with clinical stage I NSCLC treated with intended MIS or SBRT from January 2020 to July 2023. A prediction model for selection for SBRT was created based on multivariable logistic regression analysis. The receiver operating characteristic curve analysis stratified the cohort into 3 treatment-related risk categories. Post-procedural outcomes, recurrence and overall survival (OS) were investigated to assess the performance of the model.</p><p><strong>Results: </strong>In total, 1116 patients underwent MIS and 175 SBRT. The prediction model included age, performance status, previous pulmonary resection, MSK-Frailty score, FEV1 and DLCO, and demonstrated an area-under-the-curve of 0.908 (95%CI, 0.876-0.938). Based on the probability scores (n=1197), patients were stratified into a low-risk (MIS, n=970 and SBRT, n=28), intermediate-risk (MIS, n=96 and SBRT, n=53) and high-risk category (MIS, n=10 and SBRT, n=40). Treatment modality was not associated with OS (HR of SBRT, 1.67 [95%CI: 0.80-3.48]; P=0.20).</p><p><strong>Conclusion: </strong>Clinical expertise can be translated into a robust predictive model, guiding the selection of stage I NSCLC patients for MIS versus SBRT and effectively categorizing them into three distinct risk groups. Patients in the intermediate category could benefit most from multidisciplinary evaluation.</p>","PeriodicalId":8017,"journal":{"name":"Annals of surgery","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-world Decision-making Process for Stereotactic Body Radiotherapy Versus Minimally Invasive Surgery in Early-stage Lung Cancer Patients.\",\"authors\":\"Stijn Vanstraelen, Kay See Tan, Prasad S Adusumilli, Manjit S Bains, Matthew J Bott, Robert J Downey, Daniel R Gomez, Katherine D Gray, James Huang, James M Isbell, Daniela Molena, Bernard J Park, Andreas Rimner, Valerie W Rusch, Narek Shaverdian, Smita Sihag, Abraham J Wu, David R Jones, Gaetano Rocco\",\"doi\":\"10.1097/SLA.0000000000006552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To generate a prediction model for selection of treatment modality for early-stage non-small cell lung cancer (NSCLC).</p><p><strong>Summary background data: </strong>Stereotactic body radiotherapy (SBRT) and minimally invasive surgery (MIS) are used in the local treatment of early-stage NSCLC. However, selection of patients for either SBRT or MIS remains challenging, due to the multitude of factors influencing the decision-making process.</p><p><strong>Methods: </strong>We analyzed 1291 patients with clinical stage I NSCLC treated with intended MIS or SBRT from January 2020 to July 2023. A prediction model for selection for SBRT was created based on multivariable logistic regression analysis. The receiver operating characteristic curve analysis stratified the cohort into 3 treatment-related risk categories. Post-procedural outcomes, recurrence and overall survival (OS) were investigated to assess the performance of the model.</p><p><strong>Results: </strong>In total, 1116 patients underwent MIS and 175 SBRT. The prediction model included age, performance status, previous pulmonary resection, MSK-Frailty score, FEV1 and DLCO, and demonstrated an area-under-the-curve of 0.908 (95%CI, 0.876-0.938). Based on the probability scores (n=1197), patients were stratified into a low-risk (MIS, n=970 and SBRT, n=28), intermediate-risk (MIS, n=96 and SBRT, n=53) and high-risk category (MIS, n=10 and SBRT, n=40). Treatment modality was not associated with OS (HR of SBRT, 1.67 [95%CI: 0.80-3.48]; P=0.20).</p><p><strong>Conclusion: </strong>Clinical expertise can be translated into a robust predictive model, guiding the selection of stage I NSCLC patients for MIS versus SBRT and effectively categorizing them into three distinct risk groups. Patients in the intermediate category could benefit most from multidisciplinary evaluation.</p>\",\"PeriodicalId\":8017,\"journal\":{\"name\":\"Annals of surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SLA.0000000000006552\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SLA.0000000000006552","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

目的:为早期非小细胞肺癌(NSCLC)治疗方式的选择建立预测模型:建立一个预测模型,用于选择早期非小细胞肺癌(NSCLC)的治疗方式:立体定向体放射治疗(SBRT)和微创手术(MIS)被用于早期非小细胞肺癌的局部治疗。然而,由于影响决策过程的因素众多,选择患者接受 SBRT 或 MIS 治疗仍具有挑战性:我们对 2020 年 1 月至 2023 年 7 月期间接受 MIS 或 SBRT 治疗的 1291 例临床 I 期 NSCLC 患者进行了分析。在多变量逻辑回归分析的基础上,建立了选择 SBRT 的预测模型。接收者操作特征曲线分析将组群分为 3 个治疗相关风险类别。为了评估该模型的性能,对手术后的结果、复发率和总生存率(OS)进行了调查:共有1116名患者接受了MIS治疗,175名患者接受了SBRT治疗。预测模型包括年龄、表现状态、既往肺切除术、MSK-Frailty 评分、FEV1 和 DLCO,其曲线下面积为 0.908(95%CI,0.876-0.938)。根据概率评分(n=1197),患者被分为低危(MIS,n=970;SBRT,n=28)、中危(MIS,n=96;SBRT,n=53)和高危(MIS,n=10;SBRT,n=40)。治疗方式与OS无关(SBRT的HR为1.67 [95%CI:0.80-3.48];P=0.20):临床专业知识可转化为强大的预测模型,指导选择 I 期 NSCLC 患者接受 MIS 或 SBRT 治疗,并有效地将患者分为三个不同的风险组别。中间组患者可从多学科评估中获益最多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-world Decision-making Process for Stereotactic Body Radiotherapy Versus Minimally Invasive Surgery in Early-stage Lung Cancer Patients.

Objective: To generate a prediction model for selection of treatment modality for early-stage non-small cell lung cancer (NSCLC).

Summary background data: Stereotactic body radiotherapy (SBRT) and minimally invasive surgery (MIS) are used in the local treatment of early-stage NSCLC. However, selection of patients for either SBRT or MIS remains challenging, due to the multitude of factors influencing the decision-making process.

Methods: We analyzed 1291 patients with clinical stage I NSCLC treated with intended MIS or SBRT from January 2020 to July 2023. A prediction model for selection for SBRT was created based on multivariable logistic regression analysis. The receiver operating characteristic curve analysis stratified the cohort into 3 treatment-related risk categories. Post-procedural outcomes, recurrence and overall survival (OS) were investigated to assess the performance of the model.

Results: In total, 1116 patients underwent MIS and 175 SBRT. The prediction model included age, performance status, previous pulmonary resection, MSK-Frailty score, FEV1 and DLCO, and demonstrated an area-under-the-curve of 0.908 (95%CI, 0.876-0.938). Based on the probability scores (n=1197), patients were stratified into a low-risk (MIS, n=970 and SBRT, n=28), intermediate-risk (MIS, n=96 and SBRT, n=53) and high-risk category (MIS, n=10 and SBRT, n=40). Treatment modality was not associated with OS (HR of SBRT, 1.67 [95%CI: 0.80-3.48]; P=0.20).

Conclusion: Clinical expertise can be translated into a robust predictive model, guiding the selection of stage I NSCLC patients for MIS versus SBRT and effectively categorizing them into three distinct risk groups. Patients in the intermediate category could benefit most from multidisciplinary evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of surgery
Annals of surgery 医学-外科
CiteScore
14.40
自引率
4.40%
发文量
687
审稿时长
4 months
期刊介绍: The Annals of Surgery is a renowned surgery journal, recognized globally for its extensive scholarly references. It serves as a valuable resource for the international medical community by disseminating knowledge regarding important developments in surgical science and practice. Surgeons regularly turn to the Annals of Surgery to stay updated on innovative practices and techniques. The journal also offers special editorial features such as "Advances in Surgical Technique," offering timely coverage of ongoing clinical issues. Additionally, the journal publishes monthly review articles that address the latest concerns in surgical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信