铜绿假单胞菌 ExoY 感染肺微血管内皮细胞会向细胞外释放环核苷酸。

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner
{"title":"铜绿假单胞菌 ExoY 感染肺微血管内皮细胞会向细胞外释放环核苷酸。","authors":"Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner","doi":"10.1152/ajplung.00038.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether <i>P. aeruginosa</i> primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with <i>P. aeruginosa</i> expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following <i>P. aeruginosa</i> ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, <i>P. aeruginosa</i> infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent <i>P. aeruginosa</i>.<b>NEW & NOTEWORTHY</b> <i>P. aeruginosa</i> exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. <i>P. aeruginosa</i> infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L756-L768"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560077/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Pseudomonas aeruginosa</i> ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment.\",\"authors\":\"Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner\",\"doi\":\"10.1152/ajplung.00038.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether <i>P. aeruginosa</i> primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with <i>P. aeruginosa</i> expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following <i>P. aeruginosa</i> ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, <i>P. aeruginosa</i> infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent <i>P. aeruginosa</i>.<b>NEW & NOTEWORTHY</b> <i>P. aeruginosa</i> exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. <i>P. aeruginosa</i> infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L756-L768\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00038.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1152/ajplung.00038.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

表达可溶性杂环酶 ExoY 的铜绿假单胞菌三型分泌系统(TTSS)能在肺微血管内皮细胞(PMVECs)中产生环核苷酸。在细胞内,环核苷酸信号高度分区,但这些第二信使也会释放到细胞外空间。虽然激动剂刺激内源性腺苷酸环化酶(AC)或 ExoY 的存在会增加环核苷酸,但细胞内与细胞外的信号比例尚未确定。此外,目前还不清楚铜绿假单胞菌原发感染或用原发感染产生的无菌培养基上清处理是否会改变β-肾上腺素能激动剂诱导的 PMVECs 中 cAMP 的升高。在这里,我们确定 PMVECs 在内源性 AC 受 beta 肾上腺素能刺激后,以及在感染表达 ExoY 的铜绿假单胞菌后,会向细胞外空间连续释放 cAMP。令人惊讶的是,在 PMVECs 中,在基线或铜绿假单胞菌 ExoY 感染后,细胞内只检测到一小部分 cGMP,而在细胞外检测到的 cGMP 总量所占比例较大。因此,仅检测细胞内的环核苷酸可能会低估肺内皮细胞生成环核苷酸的能力,因为大部分环核苷酸被输送到细胞外。此外,铜绿假单胞菌感染或用原发感染的无菌培养基上清液处理会抑制β-肾上腺素能cAMP反应,而功能性ExoY的表达会进一步减弱这种反应。这些发现揭示了铜绿假单胞菌感染表达 TTSS 的 ExoY 后细胞外环核苷酸过量的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudomonas aeruginosa ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment.

Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHY P. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信