Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner
{"title":"铜绿假单胞菌 ExoY 感染肺微血管内皮细胞会向细胞外释放环核苷酸。","authors":"Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner","doi":"10.1152/ajplung.00038.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether <i>P. aeruginosa</i> primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with <i>P. aeruginosa</i> expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following <i>P. aeruginosa</i> ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, <i>P. aeruginosa</i> infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent <i>P. aeruginosa</i>.<b>NEW & NOTEWORTHY</b> <i>P. aeruginosa</i> exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. <i>P. aeruginosa</i> infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L756-L768"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560077/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Pseudomonas aeruginosa</i> ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment.\",\"authors\":\"Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner\",\"doi\":\"10.1152/ajplung.00038.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether <i>P. aeruginosa</i> primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with <i>P. aeruginosa</i> expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following <i>P. aeruginosa</i> ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, <i>P. aeruginosa</i> infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent <i>P. aeruginosa</i>.<b>NEW & NOTEWORTHY</b> <i>P. aeruginosa</i> exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. <i>P. aeruginosa</i> infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L756-L768\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00038.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1152/ajplung.00038.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Pseudomonas aeruginosa ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment.
Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHYP. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.