Eunju Jang, Fengfei Ma, Daniela Tomazela, Laurence Fayadat-Dilman, Mohammad Ahmed Al-Sayah
{"title":"从治疗蛋白中识别酪氨酸硫酸化的综合策略。","authors":"Eunju Jang, Fengfei Ma, Daniela Tomazela, Laurence Fayadat-Dilman, Mohammad Ahmed Al-Sayah","doi":"10.1021/jasms.4c00303","DOIUrl":null,"url":null,"abstract":"<p><p>Posttranslational modifications (PTMs) are potential critical quality attributes in biotherapeutic development, as they can affect drug efficacy and safety. Tyrosine sulfation plays a critical role in protein-protein interactions and has been found on many surface receptors as well as antibody complementarity-determining regions (CDR). However, the presence and function of tyrosine sulfation in therapeutic proteins have not been broadly investigated due to difficulties in detecting the modification. Here, we establish an integrated strategy to identify tyrosine sulfation in biotherapeutic proteins. In silico prediction was used to estimate possible modification sites, followed by the elucidation with intact LCMS and native SCX-MS. The combination of these three steps takes less than 1 h, which provides quick and confident preliminary detection of potential CQAs. Taking NB1 as an example, three +80 Da mass shifts were observed from intact mass analysis and three acidic peaks were monitored by SCX, allowing confirmation of modification as either phosphorylation or sulfation. Peptide mapping, Fe<sup>3+</sup>-IMAC enrichment, and dephosphorylation were further conducted to provide improved signal intensity and differentiation of modification such as sulfation or phosphorylation. With this integrated strategy, we were able to identify for the first time both tyrosine sulfation and serine phosphorylation in one therapeutic protein.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Strategy to Identify Tyrosine Sulfation from the Therapeutic Proteins.\",\"authors\":\"Eunju Jang, Fengfei Ma, Daniela Tomazela, Laurence Fayadat-Dilman, Mohammad Ahmed Al-Sayah\",\"doi\":\"10.1021/jasms.4c00303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posttranslational modifications (PTMs) are potential critical quality attributes in biotherapeutic development, as they can affect drug efficacy and safety. Tyrosine sulfation plays a critical role in protein-protein interactions and has been found on many surface receptors as well as antibody complementarity-determining regions (CDR). However, the presence and function of tyrosine sulfation in therapeutic proteins have not been broadly investigated due to difficulties in detecting the modification. Here, we establish an integrated strategy to identify tyrosine sulfation in biotherapeutic proteins. In silico prediction was used to estimate possible modification sites, followed by the elucidation with intact LCMS and native SCX-MS. The combination of these three steps takes less than 1 h, which provides quick and confident preliminary detection of potential CQAs. Taking NB1 as an example, three +80 Da mass shifts were observed from intact mass analysis and three acidic peaks were monitored by SCX, allowing confirmation of modification as either phosphorylation or sulfation. Peptide mapping, Fe<sup>3+</sup>-IMAC enrichment, and dephosphorylation were further conducted to provide improved signal intensity and differentiation of modification such as sulfation or phosphorylation. With this integrated strategy, we were able to identify for the first time both tyrosine sulfation and serine phosphorylation in one therapeutic protein.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00303\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00303","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Integrated Strategy to Identify Tyrosine Sulfation from the Therapeutic Proteins.
Posttranslational modifications (PTMs) are potential critical quality attributes in biotherapeutic development, as they can affect drug efficacy and safety. Tyrosine sulfation plays a critical role in protein-protein interactions and has been found on many surface receptors as well as antibody complementarity-determining regions (CDR). However, the presence and function of tyrosine sulfation in therapeutic proteins have not been broadly investigated due to difficulties in detecting the modification. Here, we establish an integrated strategy to identify tyrosine sulfation in biotherapeutic proteins. In silico prediction was used to estimate possible modification sites, followed by the elucidation with intact LCMS and native SCX-MS. The combination of these three steps takes less than 1 h, which provides quick and confident preliminary detection of potential CQAs. Taking NB1 as an example, three +80 Da mass shifts were observed from intact mass analysis and three acidic peaks were monitored by SCX, allowing confirmation of modification as either phosphorylation or sulfation. Peptide mapping, Fe3+-IMAC enrichment, and dephosphorylation were further conducted to provide improved signal intensity and differentiation of modification such as sulfation or phosphorylation. With this integrated strategy, we were able to identify for the first time both tyrosine sulfation and serine phosphorylation in one therapeutic protein.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives