绿豆淀粉秸秆的强度、柔韧性和疏水性:退火时间引起的方向变化

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Kun Wang, Shuo Sun, Jixun Xie, Li Guo, Bo Cui, Feixue Zou
{"title":"绿豆淀粉秸秆的强度、柔韧性和疏水性:退火时间引起的方向变化","authors":"Kun Wang, Shuo Sun, Jixun Xie, Li Guo, Bo Cui, Feixue Zou","doi":"10.1111/1750-3841.17426","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve starch straws with high strength and large toughness, the effects of annealing time on structural and functional performances of mung bean starch straws were studied. The results revealed that with increasing annealing time from 0to 60 min, the ratios of 1047 cm<sup>-1</sup>/1022 cm<sup>-1</sup> in Fourier transform infrared spectroscopy decreased from 1.37 to 1.20, and the relative crystallinities decreased from 12.09% to 11.01%. The relative crystallinity increased to 13.28% when annealing time increased to 120 min. The maximum bending force increased from 10.93 to 104.24 N, and modulus of elasticity enhanced from 0.93 to 62.68 N/mm when annealing time increased from 0 to 120 min. Starch straws annealed for 120 min had the lowest water absorption (94.61%), while starch straws annealed for 60 min had the highest water absorption (127.38%). This outcome not only lay a theoretical foundation for preparing biodegradable starch straws with excellent performance, but also apply for beverages, food container, food packaging films, and so on, strongly promoting starch industrial transformation and development.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength, pliability, and hydrophobicity of mung bean starch straws: Orientation change caused by annealing time.\",\"authors\":\"Kun Wang, Shuo Sun, Jixun Xie, Li Guo, Bo Cui, Feixue Zou\",\"doi\":\"10.1111/1750-3841.17426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve starch straws with high strength and large toughness, the effects of annealing time on structural and functional performances of mung bean starch straws were studied. The results revealed that with increasing annealing time from 0to 60 min, the ratios of 1047 cm<sup>-1</sup>/1022 cm<sup>-1</sup> in Fourier transform infrared spectroscopy decreased from 1.37 to 1.20, and the relative crystallinities decreased from 12.09% to 11.01%. The relative crystallinity increased to 13.28% when annealing time increased to 120 min. The maximum bending force increased from 10.93 to 104.24 N, and modulus of elasticity enhanced from 0.93 to 62.68 N/mm when annealing time increased from 0 to 120 min. Starch straws annealed for 120 min had the lowest water absorption (94.61%), while starch straws annealed for 60 min had the highest water absorption (127.38%). This outcome not only lay a theoretical foundation for preparing biodegradable starch straws with excellent performance, but also apply for beverages, food container, food packaging films, and so on, strongly promoting starch industrial transformation and development.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17426\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17426","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了获得强度高、韧性大的淀粉吸管,研究了退火时间对绿豆淀粉吸管结构和功能性能的影响。结果表明,随着退火时间从 0 分钟到 60 分钟的增加,傅立叶变换红外光谱中 1047 cm-1/1022 cm-1 的比值从 1.37 降至 1.20,相对结晶度从 12.09% 降至 11.01%。当退火时间增加到 120 分钟时,相对结晶度增加到 13.28%。退火时间从 0 分钟增加到 120 分钟时,最大弯曲力从 10.93 牛顿增加到 104.24 牛顿,弹性模量从 0.93 牛顿/毫米增加到 62.68 牛顿/毫米。退火 120 分钟的淀粉吸管吸水率最低(94.61%),而退火 60 分钟的淀粉吸管吸水率最高(127.38%)。该成果不仅为制备性能优异的可降解淀粉吸管奠定了理论基础,还可应用于饮料、食品容器、食品包装薄膜等领域,有力地推动了淀粉产业的转型发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength, pliability, and hydrophobicity of mung bean starch straws: Orientation change caused by annealing time.

To achieve starch straws with high strength and large toughness, the effects of annealing time on structural and functional performances of mung bean starch straws were studied. The results revealed that with increasing annealing time from 0to 60 min, the ratios of 1047 cm-1/1022 cm-1 in Fourier transform infrared spectroscopy decreased from 1.37 to 1.20, and the relative crystallinities decreased from 12.09% to 11.01%. The relative crystallinity increased to 13.28% when annealing time increased to 120 min. The maximum bending force increased from 10.93 to 104.24 N, and modulus of elasticity enhanced from 0.93 to 62.68 N/mm when annealing time increased from 0 to 120 min. Starch straws annealed for 120 min had the lowest water absorption (94.61%), while starch straws annealed for 60 min had the highest water absorption (127.38%). This outcome not only lay a theoretical foundation for preparing biodegradable starch straws with excellent performance, but also apply for beverages, food container, food packaging films, and so on, strongly promoting starch industrial transformation and development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信