{"title":"研究变形晶体暗场 X 射线显微镜的高木-陶平方程替代方法。","authors":"Kun Lun Wang, Xu Kang, Xiao Ya Li","doi":"10.1107/S2053273324008295","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an alternative method to the Takagi-Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi-Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi-Taupin equations.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"414-421"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.\",\"authors\":\"Kun Lun Wang, Xu Kang, Xiao Ya Li\",\"doi\":\"10.1107/S2053273324008295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an alternative method to the Takagi-Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi-Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi-Taupin equations.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\" \",\"pages\":\"414-421\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273324008295\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273324008295","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了一种替代高木-陶平方程的方法,用于研究变形晶体的暗场 X 射线显微镜(DFXM)。在不能忽略动态衍射的情况下,必须评估基于运动衍射理论的数据解释可能存在的不准确性。与高木-陶平方程不同,这一新方法利用了精确的色散关系,并在数值实现中使用了之前开发的有限差分方案,并稍作修改。通过计算具有三个分量的金刚石晶体的衍射,验证了数值实现的有效性,其中动力学衍射适用于第一个分量,运动学衍射适用于其余两个分量。利用衍射强度测试了数值收敛性。此外,还利用新方法计算了含有堆积断层的金刚石晶体的 DFXM 图像,并与实验结果进行了比较。新方法还被用于计算扭曲金刚石晶体的 DFXM 图像,结果明显不同于使用 Takagi-Taupin 方程得到的结果。
An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.
This study introduces an alternative method to the Takagi-Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi-Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi-Taupin equations.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.