S Lohmann, F M Pramotton, A Taloni, A Ferrari, D Poulikakos, C Giampietro
{"title":"长程限制下上皮细胞集体的延迟干扰诱导振荡迁移模式。","authors":"S Lohmann, F M Pramotton, A Taloni, A Ferrari, D Poulikakos, C Giampietro","doi":"10.1093/intbio/zyae016","DOIUrl":null,"url":null,"abstract":"<p><p>Collective dynamics of cells in confined geometry regulate several biological processes including cell migration, proliferation, differentiation, and communication. In this work, combining simulation with experimental data, we studied the oscillatory motion of epithelial sheets in smaller areas of confinement, and we linked the monolayer maturation induced-jamming with the wave formation. We showed that epithelial cell populations with delayed jamming properties use the additional time available from this delay to coordinate their movement, generating wave motion in larger areas of confinement compared to control populations. Furthermore, the effects of combining geometric confinement with contact guiding micro-gratings on this wave formation were investigated. We demonstrated that collective migratory oscillations under large geometrical confinement depend on the jamming state of the cell monolayers. The early dynamical state of the experimental results obtained was simulated by self-propelled Voronoi computations, comparing cells with solid-like and fluid-like behavior. Together our model describes the wave formation under confinement and the nodal oscillatory dynamics of the early dynamic stage of the system. Insight Box: Collective behavior of cells in confined spaces impacts biological processes. Through experimental data combined with simulations, the oscillatory motion of epithelial sheets in small areas of confinement was described. A correlation between the level of cell jamming and the formation of waves was detected. Cell populations with delayed jamming presented wave motion in larger confinement areas. The effects of combining geometric confinement with substrate micro-gratings demonstrated that the collective migratory oscillations in large confinement areas rely on the jamming state of cells. The early dynamical state was simulated using self-propelled Voronoi computations that help to understand wave formation under confinement and the nodal oscillatory dynamics of early-stage systems.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delayed jamming-induced oscillatory migration patterns of epithelial collectives under long-range confinement.\",\"authors\":\"S Lohmann, F M Pramotton, A Taloni, A Ferrari, D Poulikakos, C Giampietro\",\"doi\":\"10.1093/intbio/zyae016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collective dynamics of cells in confined geometry regulate several biological processes including cell migration, proliferation, differentiation, and communication. In this work, combining simulation with experimental data, we studied the oscillatory motion of epithelial sheets in smaller areas of confinement, and we linked the monolayer maturation induced-jamming with the wave formation. We showed that epithelial cell populations with delayed jamming properties use the additional time available from this delay to coordinate their movement, generating wave motion in larger areas of confinement compared to control populations. Furthermore, the effects of combining geometric confinement with contact guiding micro-gratings on this wave formation were investigated. We demonstrated that collective migratory oscillations under large geometrical confinement depend on the jamming state of the cell monolayers. The early dynamical state of the experimental results obtained was simulated by self-propelled Voronoi computations, comparing cells with solid-like and fluid-like behavior. Together our model describes the wave formation under confinement and the nodal oscillatory dynamics of the early dynamic stage of the system. Insight Box: Collective behavior of cells in confined spaces impacts biological processes. Through experimental data combined with simulations, the oscillatory motion of epithelial sheets in small areas of confinement was described. A correlation between the level of cell jamming and the formation of waves was detected. Cell populations with delayed jamming presented wave motion in larger confinement areas. The effects of combining geometric confinement with substrate micro-gratings demonstrated that the collective migratory oscillations in large confinement areas rely on the jamming state of cells. The early dynamical state was simulated using self-propelled Voronoi computations that help to understand wave formation under confinement and the nodal oscillatory dynamics of early-stage systems.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"16 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyae016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyae016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Delayed jamming-induced oscillatory migration patterns of epithelial collectives under long-range confinement.
Collective dynamics of cells in confined geometry regulate several biological processes including cell migration, proliferation, differentiation, and communication. In this work, combining simulation with experimental data, we studied the oscillatory motion of epithelial sheets in smaller areas of confinement, and we linked the monolayer maturation induced-jamming with the wave formation. We showed that epithelial cell populations with delayed jamming properties use the additional time available from this delay to coordinate their movement, generating wave motion in larger areas of confinement compared to control populations. Furthermore, the effects of combining geometric confinement with contact guiding micro-gratings on this wave formation were investigated. We demonstrated that collective migratory oscillations under large geometrical confinement depend on the jamming state of the cell monolayers. The early dynamical state of the experimental results obtained was simulated by self-propelled Voronoi computations, comparing cells with solid-like and fluid-like behavior. Together our model describes the wave formation under confinement and the nodal oscillatory dynamics of the early dynamic stage of the system. Insight Box: Collective behavior of cells in confined spaces impacts biological processes. Through experimental data combined with simulations, the oscillatory motion of epithelial sheets in small areas of confinement was described. A correlation between the level of cell jamming and the formation of waves was detected. Cell populations with delayed jamming presented wave motion in larger confinement areas. The effects of combining geometric confinement with substrate micro-gratings demonstrated that the collective migratory oscillations in large confinement areas rely on the jamming state of cells. The early dynamical state was simulated using self-propelled Voronoi computations that help to understand wave formation under confinement and the nodal oscillatory dynamics of early-stage systems.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.