{"title":"从端到端语义场景文本特征识别视觉地点","authors":"Zobeir Raisi, John Zelek","doi":"10.3389/frobt.2024.1424883","DOIUrl":null,"url":null,"abstract":"<p><p>We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visual place recognition from end-to-end semantic scene text features.\",\"authors\":\"Zobeir Raisi, John Zelek\",\"doi\":\"10.3389/frobt.2024.1424883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1424883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1424883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Visual place recognition from end-to-end semantic scene text features.
We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.