优于总变异正则化。

International journal of biomedical research & practice Pub Date : 2024-01-01 Epub Date: 2024-06-21
Gengsheng L Zeng
{"title":"优于总变异正则化。","authors":"Gengsheng L Zeng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of <math><mrow><mn>40</mn></mrow> <mrow><mo>°</mo></mrow> </math> . For two-dimensional parallel-beam imaging, the required angular range is supposed to be <math><mrow><mn>180</mn></mrow> <mrow><mo>°</mo></mrow> </math> .</p>","PeriodicalId":520232,"journal":{"name":"International journal of biomedical research & practice","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Better than the Total Variation Regularization.\",\"authors\":\"Gengsheng L Zeng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of <math><mrow><mn>40</mn></mrow> <mrow><mo>°</mo></mrow> </math> . For two-dimensional parallel-beam imaging, the required angular range is supposed to be <math><mrow><mn>180</mn></mrow> <mrow><mo>°</mo></mrow> </math> .</p>\",\"PeriodicalId\":520232,\"journal\":{\"name\":\"International journal of biomedical research & practice\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biomedical research & practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical research & practice","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

总变化(TV)正则化在迭代图像重建中很受欢迎,因为它鼓励图像的片断不变性。事实上,TV 正则化的强度不足以实现片断不变的外观。本文提出了一种不同的正则化函数,它能够抑制图像中的一些平滑过渡,并鼓励片断恒定行为。这种新的正则化函数涉及一个高斯函数。我们使用有限角度断层扫描问题来说明这种新正则化函数的有效性。本文考虑的有限角度断层扫描情况使用 40 ° 的扫描角度范围。对于二维平行光束成像,所需的角度范围应该是 180 °。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Better than the Total Variation Regularization.

Better than the Total Variation Regularization.

Better than the Total Variation Regularization.

Better than the Total Variation Regularization.

The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of 40 ° . For two-dimensional parallel-beam imaging, the required angular range is supposed to be 180 ° .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信