Pingping Lin , Daoning Zhang , Jie Tian , Binbin Lai , Yu Yang , Yicen Yan , Shenxi Zhang , Guohong Zhang , Hang Li
{"title":"皮肤成纤维细胞在瘢痕疙瘩中保留了特定部位的转录组特征。","authors":"Pingping Lin , Daoning Zhang , Jie Tian , Binbin Lai , Yu Yang , Yicen Yan , Shenxi Zhang , Guohong Zhang , Hang Li","doi":"10.1016/j.jdermsci.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Human skin displays extensive spatial heterogeneity and maintains distinct positional identity. However, the impact of disease processes on these site-specific differences remains poorly understood, especially in keloid, a skin disorder characterized by pronounced spatial heterogeneity.</div></div><div><h3>Objective</h3><div>This study aimed to assess whether the spatial heterogeneity and positional identity observed in different anatomic sites persist in keloids.</div></div><div><h3>Methods</h3><div>Transcriptome sequencing was conducted on 139 keloid dermal tissues and 19 keloid fibroblast samples spanning seven distinct anatomic sites to identify the spatial transcriptomic heterogeneity. In addition, single-cell RNA sequencing data were utilized to elucidate the contributions of various cell types to the maintenance of positional identity.</div></div><div><h3>Results</h3><div>Keloid dermal tissues from diverse sites were categorized into three anatomic groupings: trunk and extremity, ear, and mandible regions. Enrichment analysis of differentially expressed genes unveiled that keloids across distinct regions retained unique anatomically-related gene expression profiles, reminiscent of those observed in normal skin. Notably, regional disparities consistently prevailed and surpassed inter-donor variations. Single-cell RNA sequencing further revealed that mesenchymal cells, particularly fibroblasts, made major contributions to positional identity in keloids. Moreover, gene expression profiles in primary keloid fibroblasts demonstrated a remarkable persistence of positional identity, enduring even after prolonged in vitro propagation.</div></div><div><h3>Conclusion</h3><div>Taken together, these findings imply that keloids remain positional identity and developmental imprinting characteristic of normal skin. Fibroblasts predominantly contribute to the spatial heterogeneity observed in keloids.</div></div>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"116 1","pages":"Pages 41-49"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dermal fibroblasts retain site-specific transcriptomic identity in keloids\",\"authors\":\"Pingping Lin , Daoning Zhang , Jie Tian , Binbin Lai , Yu Yang , Yicen Yan , Shenxi Zhang , Guohong Zhang , Hang Li\",\"doi\":\"10.1016/j.jdermsci.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Human skin displays extensive spatial heterogeneity and maintains distinct positional identity. However, the impact of disease processes on these site-specific differences remains poorly understood, especially in keloid, a skin disorder characterized by pronounced spatial heterogeneity.</div></div><div><h3>Objective</h3><div>This study aimed to assess whether the spatial heterogeneity and positional identity observed in different anatomic sites persist in keloids.</div></div><div><h3>Methods</h3><div>Transcriptome sequencing was conducted on 139 keloid dermal tissues and 19 keloid fibroblast samples spanning seven distinct anatomic sites to identify the spatial transcriptomic heterogeneity. In addition, single-cell RNA sequencing data were utilized to elucidate the contributions of various cell types to the maintenance of positional identity.</div></div><div><h3>Results</h3><div>Keloid dermal tissues from diverse sites were categorized into three anatomic groupings: trunk and extremity, ear, and mandible regions. Enrichment analysis of differentially expressed genes unveiled that keloids across distinct regions retained unique anatomically-related gene expression profiles, reminiscent of those observed in normal skin. Notably, regional disparities consistently prevailed and surpassed inter-donor variations. Single-cell RNA sequencing further revealed that mesenchymal cells, particularly fibroblasts, made major contributions to positional identity in keloids. Moreover, gene expression profiles in primary keloid fibroblasts demonstrated a remarkable persistence of positional identity, enduring even after prolonged in vitro propagation.</div></div><div><h3>Conclusion</h3><div>Taken together, these findings imply that keloids remain positional identity and developmental imprinting characteristic of normal skin. Fibroblasts predominantly contribute to the spatial heterogeneity observed in keloids.</div></div>\",\"PeriodicalId\":94076,\"journal\":{\"name\":\"Journal of dermatological science\",\"volume\":\"116 1\",\"pages\":\"Pages 41-49\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of dermatological science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923181124001737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dermatological science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923181124001737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dermal fibroblasts retain site-specific transcriptomic identity in keloids
Background
Human skin displays extensive spatial heterogeneity and maintains distinct positional identity. However, the impact of disease processes on these site-specific differences remains poorly understood, especially in keloid, a skin disorder characterized by pronounced spatial heterogeneity.
Objective
This study aimed to assess whether the spatial heterogeneity and positional identity observed in different anatomic sites persist in keloids.
Methods
Transcriptome sequencing was conducted on 139 keloid dermal tissues and 19 keloid fibroblast samples spanning seven distinct anatomic sites to identify the spatial transcriptomic heterogeneity. In addition, single-cell RNA sequencing data were utilized to elucidate the contributions of various cell types to the maintenance of positional identity.
Results
Keloid dermal tissues from diverse sites were categorized into three anatomic groupings: trunk and extremity, ear, and mandible regions. Enrichment analysis of differentially expressed genes unveiled that keloids across distinct regions retained unique anatomically-related gene expression profiles, reminiscent of those observed in normal skin. Notably, regional disparities consistently prevailed and surpassed inter-donor variations. Single-cell RNA sequencing further revealed that mesenchymal cells, particularly fibroblasts, made major contributions to positional identity in keloids. Moreover, gene expression profiles in primary keloid fibroblasts demonstrated a remarkable persistence of positional identity, enduring even after prolonged in vitro propagation.
Conclusion
Taken together, these findings imply that keloids remain positional identity and developmental imprinting characteristic of normal skin. Fibroblasts predominantly contribute to the spatial heterogeneity observed in keloids.