Hortense de Calbiac, Solène Renault, Grégoire Haouy, Vincent Jung, Kevin Roger, Qihui Zhou, Maria-Letizia Campanari, Loïc Chentout, Doris Lou Demy, Anca Marian, Nicolas Goudin, Dieter Edbauer, Chiara Guerrera, Sorana Ciura, Edor Kabashi
{"title":"C9orf72 功能缺失导致的 Poly-GP 积累通过自噬和有丝分裂缺陷诱导运动神经元凋亡。","authors":"Hortense de Calbiac, Solène Renault, Grégoire Haouy, Vincent Jung, Kevin Roger, Qihui Zhou, Maria-Letizia Campanari, Loïc Chentout, Doris Lou Demy, Anca Marian, Nicolas Goudin, Dieter Edbauer, Chiara Guerrera, Sorana Ciura, Edor Kabashi","doi":"10.1080/15548627.2024.2358736","DOIUrl":null,"url":null,"abstract":"<p><p>The GGGGCC hexanucleotide repeat expansion (HRE) of the <i>C9orf72</i> gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. <i>C9orf72</i> HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate <i>C9orf72</i>-related ALS disease <i>in vivo</i>, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a <i>c9orf72</i> knockdown context. We report that <i>C9orf72</i> gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon <i>c9orf72</i> downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published <i>C9orf72</i> iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423671/pdf/","citationCount":"0","resultStr":"{\"title\":\"Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects.\",\"authors\":\"Hortense de Calbiac, Solène Renault, Grégoire Haouy, Vincent Jung, Kevin Roger, Qihui Zhou, Maria-Letizia Campanari, Loïc Chentout, Doris Lou Demy, Anca Marian, Nicolas Goudin, Dieter Edbauer, Chiara Guerrera, Sorana Ciura, Edor Kabashi\",\"doi\":\"10.1080/15548627.2024.2358736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The GGGGCC hexanucleotide repeat expansion (HRE) of the <i>C9orf72</i> gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. <i>C9orf72</i> HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate <i>C9orf72</i>-related ALS disease <i>in vivo</i>, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a <i>c9orf72</i> knockdown context. We report that <i>C9orf72</i> gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon <i>c9orf72</i> downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published <i>C9orf72</i> iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423671/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2358736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2358736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
C9orf72 基因的 GGGGCC 六核苷酸重复扩增(HRE)是肌萎缩性脊髓侧索硬化症(ALS)最常见的病因,ALS 是一种以运动神经元变性为特征的破坏性神经退行性疾病。C9orf72 HRE 与 C9orf72 表达水平降低有关,其翻译结果是产生二肽重复(DPRs)。为了在体内再现与 C9orf72 相关的 ALS 疾病,我们建立了一个斑马鱼模型,在 c9orf72 基因敲除的背景下表达甘氨酸-脯氨酸(GP)DPR。我们报告说,C9orf72的功能增益和功能缺失特性协同作用,诱导运动神经元变性和瘫痪,多聚(GP)优先在运动神经元内积累,同时Sqstm1/p62聚集,表明大自噬/自噬缺陷。c9orf72 下调后,poly(GP)水平会累积,与携带C9orf72 HRE的患者尸检样本中评估的水平相当。使用雷帕霉素或阿匹莫德通过化学方法促进自噬,能够挽救运动障碍。对斑马鱼纯化的运动神经元进行的蛋白质组学分析揭示了线粒体的功能障碍,并通过与之前发表的 C9orf72 iPSC 衍生的运动神经元进行比较分析证实了这一点。同样,运动神经元的三维重建表明,多聚(GP)聚集体与线粒体共聚焦,从而诱导线粒体伸长和肿胀,并导致线粒体吞噬处理失败,而通过尿磷脂 A 激活线粒体吞噬可防止运动障碍。最后,我们报告了与凋亡相关的 Casp3(Caspase 3,与凋亡相关的半胱氨酸肽酶)裂解量的增加,以及通过组成性抑制 Casp9 或使用十烷基泛醌治疗来挽救运动神经元变性。在此,我们提供了 C9ALS-FTD 关键致病步骤的证据,这些步骤可通过药理学途径进行靶向治疗,从而为 ALS 患者带来新的治疗前景。
Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects.
The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.