基于子任务分解的学习和基准,用于预测遗传扰动结果及其他。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yicheng Gao, Zhiting Wei, Kejing Dong, Ke Chen, Jingya Yang, Guohui Chuai, Qi Liu
{"title":"基于子任务分解的学习和基准,用于预测遗传扰动结果及其他。","authors":"Yicheng Gao, Zhiting Wei, Kejing Dong, Ke Chen, Jingya Yang, Guohui Chuai, Qi Liu","doi":"10.1038/s43588-024-00698-1","DOIUrl":null,"url":null,"abstract":"Deciphering cellular responses to genetic perturbations is fundamental for a wide array of biomedical applications. However, there are three main challenges: predicting single-genetic-perturbation outcomes, predicting multiple-genetic-perturbation outcomes and predicting genetic outcomes across cell lines. Here we introduce Subtask Decomposition Modeling for Genetic Perturbation Prediction (STAMP), a flexible artificial intelligence strategy for genetic perturbation outcome prediction and downstream applications. STAMP formulates genetic perturbation prediction as a subtask decomposition problem by resolving three progressive subtasks in a problem decomposition manner, that is, identifying postperturbation differentially expressed genes, determining the expression change directions of differentially expressed genes and finally estimating the magnitudes of gene expression changes. STAMP exhibits a substantial improvement over the existing approaches on three subtasks and beyond, including the ability to identify key regulatory genes and pathways on small samples and to reveal precise genetic interactions of diverse types. By employing the subtask decomposition strategy, STAMP outperforms existing models in single, multiple and cross-cell-line scenarios for genetic perturbation prediction, showing potential to uncover gene regulations and interactions.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"773-785"},"PeriodicalIF":12.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward subtask-decomposition-based learning and benchmarking for predicting genetic perturbation outcomes and beyond\",\"authors\":\"Yicheng Gao, Zhiting Wei, Kejing Dong, Ke Chen, Jingya Yang, Guohui Chuai, Qi Liu\",\"doi\":\"10.1038/s43588-024-00698-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciphering cellular responses to genetic perturbations is fundamental for a wide array of biomedical applications. However, there are three main challenges: predicting single-genetic-perturbation outcomes, predicting multiple-genetic-perturbation outcomes and predicting genetic outcomes across cell lines. Here we introduce Subtask Decomposition Modeling for Genetic Perturbation Prediction (STAMP), a flexible artificial intelligence strategy for genetic perturbation outcome prediction and downstream applications. STAMP formulates genetic perturbation prediction as a subtask decomposition problem by resolving three progressive subtasks in a problem decomposition manner, that is, identifying postperturbation differentially expressed genes, determining the expression change directions of differentially expressed genes and finally estimating the magnitudes of gene expression changes. STAMP exhibits a substantial improvement over the existing approaches on three subtasks and beyond, including the ability to identify key regulatory genes and pathways on small samples and to reveal precise genetic interactions of diverse types. By employing the subtask decomposition strategy, STAMP outperforms existing models in single, multiple and cross-cell-line scenarios for genetic perturbation prediction, showing potential to uncover gene regulations and interactions.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 10\",\"pages\":\"773-785\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00698-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00698-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

破译细胞对遗传扰动的反应是广泛生物医学应用的基础。然而,目前存在三大挑战:预测单基因扰动结果、预测多基因扰动结果和预测跨细胞系基因结果。在此,我们介绍用于遗传扰动预测的子任务分解模型(STAMP),这是一种灵活的人工智能策略,可用于遗传扰动结果预测和下游应用。STAMP 将遗传扰动预测表述为一个子任务分解问题,以问题分解的方式解决三个渐进的子任务,即识别扰动后差异表达基因、确定差异表达基因的表达变化方向以及最后估计基因表达变化的幅度。与现有方法相比,STAMP 在三个子任务及其他方面都有很大改进,包括能够识别小样本中的关键调控基因和通路,精确揭示不同类型的遗传相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward subtask-decomposition-based learning and benchmarking for predicting genetic perturbation outcomes and beyond

Toward subtask-decomposition-based learning and benchmarking for predicting genetic perturbation outcomes and beyond
Deciphering cellular responses to genetic perturbations is fundamental for a wide array of biomedical applications. However, there are three main challenges: predicting single-genetic-perturbation outcomes, predicting multiple-genetic-perturbation outcomes and predicting genetic outcomes across cell lines. Here we introduce Subtask Decomposition Modeling for Genetic Perturbation Prediction (STAMP), a flexible artificial intelligence strategy for genetic perturbation outcome prediction and downstream applications. STAMP formulates genetic perturbation prediction as a subtask decomposition problem by resolving three progressive subtasks in a problem decomposition manner, that is, identifying postperturbation differentially expressed genes, determining the expression change directions of differentially expressed genes and finally estimating the magnitudes of gene expression changes. STAMP exhibits a substantial improvement over the existing approaches on three subtasks and beyond, including the ability to identify key regulatory genes and pathways on small samples and to reveal precise genetic interactions of diverse types. By employing the subtask decomposition strategy, STAMP outperforms existing models in single, multiple and cross-cell-line scenarios for genetic perturbation prediction, showing potential to uncover gene regulations and interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信