Wenche Sjursen, Hanne K Hyldebrandt, Liss Anne S Lavik, Bjørn Ivar Haukanes, Sarah Ariansen, Siri Briskemyr, Anna E Sylvander, Marianne T Haavind, Maren F Olsen, Elin S Røyset, Hildegunn Vetti, Astrid Stormorken, Eli Marie Grindedal
{"title":"挪威的 PMS2 基因突变谱与致病变体携带者罹患癌症的风险。","authors":"Wenche Sjursen, Hanne K Hyldebrandt, Liss Anne S Lavik, Bjørn Ivar Haukanes, Sarah Ariansen, Siri Briskemyr, Anna E Sylvander, Marianne T Haavind, Maren F Olsen, Elin S Røyset, Hildegunn Vetti, Astrid Stormorken, Eli Marie Grindedal","doi":"10.1186/s13053-024-00292-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In Norway, we have offered testing of PMS2 since 2006, and have a large national cohort of carriers. The aim of this study was to describe all PMS2 variants identified, and to describe frequency, spectrum and penetrance of cancers in carriers of class 4/5 variants.</p><p><strong>Methods: </strong>All detected PMS2 variants were collected from the diagnostic laboratories and reclassified according to ACMG criteria and gene specific guidelines. Data on variant, gender, cancer diagnosis, age at diagnosis, and age at last known follow-up was collected on all carriers of class 4/5 variants from electronic patient records. The Kaplan-Meier algorithm was used to calculate cumulative risk of any cancer, colorectal cancer and endometrial cancer.</p><p><strong>Results: </strong>In total, 220 different PMS2 variants were detected. Twenty nine class 4/5 variants were identified in 482 carriers. The most common pathogenic variant was the founder mutation c.989-1G > T, detected in 204 patients from 58 families. Eighty seven out of 482 (18.0%) had been diagnosed with colorectal cancer, 10 of these (11.8%) before 40 years. Cumulative risk at 70 years in our cohort was 34.7% for colorectal cancer and 26.1% for endometrial cancer.</p><p><strong>Conclusions: </strong>After 15 years of genetic testing, 29 different class 4/5 variants have been detected in Norway. Almost half of Norwegian PMS2 carriers have the founder variant 989-1G > T. Penetrance of colorectal cancer in our cohort was moderate but variable, as 11.5% of those diagnosed were younger than 40 years.</p>","PeriodicalId":55058,"journal":{"name":"Hereditary Cancer in Clinical Practice","volume":"22 1","pages":"20"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438158/pdf/","citationCount":"0","resultStr":"{\"title\":\"PMS2 mutation spectra in Norway and risk of cancer for carriers of pathogenic variants.\",\"authors\":\"Wenche Sjursen, Hanne K Hyldebrandt, Liss Anne S Lavik, Bjørn Ivar Haukanes, Sarah Ariansen, Siri Briskemyr, Anna E Sylvander, Marianne T Haavind, Maren F Olsen, Elin S Røyset, Hildegunn Vetti, Astrid Stormorken, Eli Marie Grindedal\",\"doi\":\"10.1186/s13053-024-00292-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In Norway, we have offered testing of PMS2 since 2006, and have a large national cohort of carriers. The aim of this study was to describe all PMS2 variants identified, and to describe frequency, spectrum and penetrance of cancers in carriers of class 4/5 variants.</p><p><strong>Methods: </strong>All detected PMS2 variants were collected from the diagnostic laboratories and reclassified according to ACMG criteria and gene specific guidelines. Data on variant, gender, cancer diagnosis, age at diagnosis, and age at last known follow-up was collected on all carriers of class 4/5 variants from electronic patient records. The Kaplan-Meier algorithm was used to calculate cumulative risk of any cancer, colorectal cancer and endometrial cancer.</p><p><strong>Results: </strong>In total, 220 different PMS2 variants were detected. Twenty nine class 4/5 variants were identified in 482 carriers. The most common pathogenic variant was the founder mutation c.989-1G > T, detected in 204 patients from 58 families. Eighty seven out of 482 (18.0%) had been diagnosed with colorectal cancer, 10 of these (11.8%) before 40 years. Cumulative risk at 70 years in our cohort was 34.7% for colorectal cancer and 26.1% for endometrial cancer.</p><p><strong>Conclusions: </strong>After 15 years of genetic testing, 29 different class 4/5 variants have been detected in Norway. Almost half of Norwegian PMS2 carriers have the founder variant 989-1G > T. Penetrance of colorectal cancer in our cohort was moderate but variable, as 11.5% of those diagnosed were younger than 40 years.</p>\",\"PeriodicalId\":55058,\"journal\":{\"name\":\"Hereditary Cancer in Clinical Practice\",\"volume\":\"22 1\",\"pages\":\"20\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditary Cancer in Clinical Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13053-024-00292-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditary Cancer in Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13053-024-00292-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
PMS2 mutation spectra in Norway and risk of cancer for carriers of pathogenic variants.
Background: In Norway, we have offered testing of PMS2 since 2006, and have a large national cohort of carriers. The aim of this study was to describe all PMS2 variants identified, and to describe frequency, spectrum and penetrance of cancers in carriers of class 4/5 variants.
Methods: All detected PMS2 variants were collected from the diagnostic laboratories and reclassified according to ACMG criteria and gene specific guidelines. Data on variant, gender, cancer diagnosis, age at diagnosis, and age at last known follow-up was collected on all carriers of class 4/5 variants from electronic patient records. The Kaplan-Meier algorithm was used to calculate cumulative risk of any cancer, colorectal cancer and endometrial cancer.
Results: In total, 220 different PMS2 variants were detected. Twenty nine class 4/5 variants were identified in 482 carriers. The most common pathogenic variant was the founder mutation c.989-1G > T, detected in 204 patients from 58 families. Eighty seven out of 482 (18.0%) had been diagnosed with colorectal cancer, 10 of these (11.8%) before 40 years. Cumulative risk at 70 years in our cohort was 34.7% for colorectal cancer and 26.1% for endometrial cancer.
Conclusions: After 15 years of genetic testing, 29 different class 4/5 variants have been detected in Norway. Almost half of Norwegian PMS2 carriers have the founder variant 989-1G > T. Penetrance of colorectal cancer in our cohort was moderate but variable, as 11.5% of those diagnosed were younger than 40 years.
期刊介绍:
Hereditary Cancer in Clinical Practice is an open access journal that publishes articles of interest for the cancer genetics community and serves as a discussion forum for the development appropriate healthcare strategies.
Cancer genetics encompasses a wide variety of disciplines and knowledge in the field is rapidly growing, especially as the amount of information linking genetic differences to inherited cancer predispositions continues expanding. With the increased knowledge of genetic variability and how this relates to cancer risk there is a growing demand not only to disseminate this information into clinical practice but also to enable competent debate concerning how such information is managed and what it implies for patient care.
Topics covered by the journal include but are not limited to:
Original research articles on any aspect of inherited predispositions to cancer.
Reviews of inherited cancer predispositions.
Application of molecular and cytogenetic analysis to clinical decision making.
Clinical aspects of the management of hereditary cancers.
Genetic counselling issues associated with cancer genetics.
The role of registries in improving health care of patients with an inherited predisposition to cancer.