Graham M. Donovan , Congping Lin , Imogen Sparkes , Peter Ashwin
{"title":"植物细胞内质网网络流的出现和稳定性。","authors":"Graham M. Donovan , Congping Lin , Imogen Sparkes , Peter Ashwin","doi":"10.1016/j.jtbi.2024.111954","DOIUrl":null,"url":null,"abstract":"<div><div>The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin–myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111954"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence and stability of endoplasmic reticulum network streaming in plant cells\",\"authors\":\"Graham M. Donovan , Congping Lin , Imogen Sparkes , Peter Ashwin\",\"doi\":\"10.1016/j.jtbi.2024.111954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin–myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"595 \",\"pages\":\"Article 111954\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002251932400239X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002251932400239X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Emergence and stability of endoplasmic reticulum network streaming in plant cells
The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin–myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.