Lloyd Wei Tat Tang, Kimberly Lapham, Theunis C Goosen
{"title":"UGT2B10 是参与拉莫三嗪代谢的主要 UDP-Glucuronosyl 转移酶 2B 异构体,并与丙戊酸的药物相互作用有关。","authors":"Lloyd Wei Tat Tang, Kimberly Lapham, Theunis C Goosen","doi":"10.1208/s12248-024-00978-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lamotrigine is a phenyltriazine anticonvulsant that is primarily metabolized by phase II UDP-glucuronosyltransferases (UGT) to a quaternary N2-glucuronide, which accounts for ~ 90% of the excreted dose in humans. While there is consensus that UGT1A4 plays a predominant role in the formation of the N2-glucuronide, there is compelling evidence in the literature to suggest that the metabolism of lamotrigine is catalyzed by another UGT isoform. However, the exact identity of the UGT isoform that contribute to the formation of this glucuronide remains uncertain. In this study, we harnessed a robust reaction phenotyping strategy to delineate the identities and its associated fraction metabolized (f<sub>m</sub>) of the UGTs involved in lamotrigine N2-glucuronidation. Foremost, human recombinant UGT mapping experiments revealed that the N2-glucuronide is catalyzed by multiple UGT isoforms. (i.e., UGT1A1, 1A3, 1A4, 1A9, 2B4, 2B7, and 2B10). Thereafter, scaling the apparent intrinsic clearances obtained from the enzyme kinetic experiments with our in-house liver-derived relative expression factors (REF) and relative activity factors (RAF) revealed that, in addition to UGT1A4, UGT2B10 was involved in the N2-glucuronidation of lamotrigine. This was further confirmed via chemical inhibition in human liver microsomes with the UGT1A4-selective inhibitor hecogenin and the UGT2B10-selective inhibitor desloratadine. By integrating various orthogonal approaches (i.e., REF- and RAF-scaling, and chemical inhibition), we quantitatively determined that the f<sub>m</sub> for UGT1A4 and UGT2B10 ranged from 0.42 - 0.64 and 0.32 - 0.57, respectively. Finally, we also provided nascent evidence that the pharmacokinetic interaction between lamotrigine and valproic acid likely arose from the in vivo inhibition of its UGT2B10-mediated pathway.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"26 6","pages":"107"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UGT2B10 is the Major UDP-Glucuronosyltransferase 2B Isoform Involved in the Metabolism of Lamotrigine and is Implicated in the Drug-Drug Interaction with Valproic Acid.\",\"authors\":\"Lloyd Wei Tat Tang, Kimberly Lapham, Theunis C Goosen\",\"doi\":\"10.1208/s12248-024-00978-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lamotrigine is a phenyltriazine anticonvulsant that is primarily metabolized by phase II UDP-glucuronosyltransferases (UGT) to a quaternary N2-glucuronide, which accounts for ~ 90% of the excreted dose in humans. While there is consensus that UGT1A4 plays a predominant role in the formation of the N2-glucuronide, there is compelling evidence in the literature to suggest that the metabolism of lamotrigine is catalyzed by another UGT isoform. However, the exact identity of the UGT isoform that contribute to the formation of this glucuronide remains uncertain. In this study, we harnessed a robust reaction phenotyping strategy to delineate the identities and its associated fraction metabolized (f<sub>m</sub>) of the UGTs involved in lamotrigine N2-glucuronidation. Foremost, human recombinant UGT mapping experiments revealed that the N2-glucuronide is catalyzed by multiple UGT isoforms. (i.e., UGT1A1, 1A3, 1A4, 1A9, 2B4, 2B7, and 2B10). Thereafter, scaling the apparent intrinsic clearances obtained from the enzyme kinetic experiments with our in-house liver-derived relative expression factors (REF) and relative activity factors (RAF) revealed that, in addition to UGT1A4, UGT2B10 was involved in the N2-glucuronidation of lamotrigine. This was further confirmed via chemical inhibition in human liver microsomes with the UGT1A4-selective inhibitor hecogenin and the UGT2B10-selective inhibitor desloratadine. By integrating various orthogonal approaches (i.e., REF- and RAF-scaling, and chemical inhibition), we quantitatively determined that the f<sub>m</sub> for UGT1A4 and UGT2B10 ranged from 0.42 - 0.64 and 0.32 - 0.57, respectively. Finally, we also provided nascent evidence that the pharmacokinetic interaction between lamotrigine and valproic acid likely arose from the in vivo inhibition of its UGT2B10-mediated pathway.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":\"26 6\",\"pages\":\"107\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00978-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00978-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
UGT2B10 is the Major UDP-Glucuronosyltransferase 2B Isoform Involved in the Metabolism of Lamotrigine and is Implicated in the Drug-Drug Interaction with Valproic Acid.
Lamotrigine is a phenyltriazine anticonvulsant that is primarily metabolized by phase II UDP-glucuronosyltransferases (UGT) to a quaternary N2-glucuronide, which accounts for ~ 90% of the excreted dose in humans. While there is consensus that UGT1A4 plays a predominant role in the formation of the N2-glucuronide, there is compelling evidence in the literature to suggest that the metabolism of lamotrigine is catalyzed by another UGT isoform. However, the exact identity of the UGT isoform that contribute to the formation of this glucuronide remains uncertain. In this study, we harnessed a robust reaction phenotyping strategy to delineate the identities and its associated fraction metabolized (fm) of the UGTs involved in lamotrigine N2-glucuronidation. Foremost, human recombinant UGT mapping experiments revealed that the N2-glucuronide is catalyzed by multiple UGT isoforms. (i.e., UGT1A1, 1A3, 1A4, 1A9, 2B4, 2B7, and 2B10). Thereafter, scaling the apparent intrinsic clearances obtained from the enzyme kinetic experiments with our in-house liver-derived relative expression factors (REF) and relative activity factors (RAF) revealed that, in addition to UGT1A4, UGT2B10 was involved in the N2-glucuronidation of lamotrigine. This was further confirmed via chemical inhibition in human liver microsomes with the UGT1A4-selective inhibitor hecogenin and the UGT2B10-selective inhibitor desloratadine. By integrating various orthogonal approaches (i.e., REF- and RAF-scaling, and chemical inhibition), we quantitatively determined that the fm for UGT1A4 and UGT2B10 ranged from 0.42 - 0.64 and 0.32 - 0.57, respectively. Finally, we also provided nascent evidence that the pharmacokinetic interaction between lamotrigine and valproic acid likely arose from the in vivo inhibition of its UGT2B10-mediated pathway.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.