三种下颌运动跟踪系统的比较分析:精确度和真实度研究

IF 3.4 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Wei Zhao, Yue Feng, Rongkai Cao, Jiyu Sun, Jiayao Zhang, Xinhuan Zhao, Weicai Liu
{"title":"三种下颌运动跟踪系统的比较分析:精确度和真实度研究","authors":"Wei Zhao, Yue Feng, Rongkai Cao, Jiyu Sun, Jiayao Zhang, Xinhuan Zhao, Weicai Liu","doi":"10.1111/jopr.13953","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to assess the precision and trueness of three jaw motion tracking systems, the KaVo ARCUSdigma system, SDiMatriX system, and Modjaw system, in recording mandibular movements based on optical and ultrasonic principles.</p><p><strong>Materials and methods: </strong>Twenty-five healthy subjects were selected for the present study to measure protrosive movement and left and right lateral movements using the three jaw motion tracking systems. Each subject's mandibular movement was recorded twice with a 1-week interval. Five parameters-sagittal condylar inclination (SCI) angle, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle-were acquired for further analysis. The precision of the jaw motion tracking systems was evaluated by comparing the results of two measurements of the same parameter. Simultaneously, cone beam computed tomography (CBCT) was utilized during the initial data acquisition and was aligned with intercuspal position (ICP) and edge-to-edge occlusion intraoral scan data. Bone landmarks were used to calculate bilateral SCI as a reference for comparison with the SCI values from each jaw motion tracking system. An independent-sample t-test was conducted to compare parameter differences, with statistical significance set at a p-value below 0.05.</p><p><strong>Results: </strong>There were no significant differences among the three jaw motion tracking systems regarding the corrected values of SCI, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle during the 1-week interval (p > 0.05). The values of bilateral SCI obtained by CBCT were 48.57 ± 6.74 (L) and 48.35 ± 5.28 (R), respectively. No significant differences were found between the reference SCI and those parameters measured by the KaVo ARCUSdigma system and the Modjaw system (p > 0.05), while the results obtained from the SDiMatriX system indicated a significant difference compared to the reference SCI (p < 0.05).</p><p><strong>Conclusions: </strong>The three jaw motion tracking systems exhibited favorable results in terms of precision. Regarding trueness, both the KaVo ARCUSdigma system and the Modjaw system demonstrated a satisfactory levels suitable for applications in digital prosthodontics within clinical settings. However, further refinement is needed to enhance the trueness of the SDiMatriX system.</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of three jaw motion tracking systems: A study on precision and trueness.\",\"authors\":\"Wei Zhao, Yue Feng, Rongkai Cao, Jiyu Sun, Jiayao Zhang, Xinhuan Zhao, Weicai Liu\",\"doi\":\"10.1111/jopr.13953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study was to assess the precision and trueness of three jaw motion tracking systems, the KaVo ARCUSdigma system, SDiMatriX system, and Modjaw system, in recording mandibular movements based on optical and ultrasonic principles.</p><p><strong>Materials and methods: </strong>Twenty-five healthy subjects were selected for the present study to measure protrosive movement and left and right lateral movements using the three jaw motion tracking systems. Each subject's mandibular movement was recorded twice with a 1-week interval. Five parameters-sagittal condylar inclination (SCI) angle, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle-were acquired for further analysis. The precision of the jaw motion tracking systems was evaluated by comparing the results of two measurements of the same parameter. Simultaneously, cone beam computed tomography (CBCT) was utilized during the initial data acquisition and was aligned with intercuspal position (ICP) and edge-to-edge occlusion intraoral scan data. Bone landmarks were used to calculate bilateral SCI as a reference for comparison with the SCI values from each jaw motion tracking system. An independent-sample t-test was conducted to compare parameter differences, with statistical significance set at a p-value below 0.05.</p><p><strong>Results: </strong>There were no significant differences among the three jaw motion tracking systems regarding the corrected values of SCI, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle during the 1-week interval (p > 0.05). The values of bilateral SCI obtained by CBCT were 48.57 ± 6.74 (L) and 48.35 ± 5.28 (R), respectively. No significant differences were found between the reference SCI and those parameters measured by the KaVo ARCUSdigma system and the Modjaw system (p > 0.05), while the results obtained from the SDiMatriX system indicated a significant difference compared to the reference SCI (p < 0.05).</p><p><strong>Conclusions: </strong>The three jaw motion tracking systems exhibited favorable results in terms of precision. Regarding trueness, both the KaVo ARCUSdigma system and the Modjaw system demonstrated a satisfactory levels suitable for applications in digital prosthodontics within clinical settings. However, further refinement is needed to enhance the trueness of the SDiMatriX system.</p>\",\"PeriodicalId\":49152,\"journal\":{\"name\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jopr.13953\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.13953","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是评估三种下颌运动跟踪系统(KaVo ARCUSdigma 系统、SDiMatriX 系统和 Modjaw 系统)基于光学和超声波原理记录下颌运动的精确性和真实性:本研究选取了 25 名健康受试者,使用这三种下颌运动跟踪系统测量前突运动和左右侧运动。每个受试者的下颌运动记录两次,每次间隔一周。研究人员采集了五个参数--矢状髁倾角 (SCI)、切缘导角、贝内特角、侧髁倾角和费舍尔角--用于进一步分析。通过比较同一参数的两次测量结果来评估下颌运动跟踪系统的精确度。同时,在初始数据采集过程中还使用了锥形束计算机断层扫描(CBCT),并将其与牙间位置(ICP)和边缘对边缘咬合口内扫描数据进行比对。骨地标用于计算双侧 SCI,作为与每个下颌运动跟踪系统的 SCI 值进行比较的参考。采用独立样本 t 检验比较参数差异,统计显著性设定为 p 值低于 0.05:三种下颌运动跟踪系统在 1 周间隔期间的 SCI、切牙导板角、贝内特角、侧髁倾角和费舍角的校正值方面没有明显差异(P > 0.05)。CBCT 获得的双侧 SCI 值分别为 48.57 ± 6.74(左侧)和 48.35 ± 5.28(右侧)。参考 SCI 与 KaVo ARCUSdigma 系统和 Modjaw 系统测量的参数之间没有发现明显差异(p > 0.05),而 SDiMatriX 系统获得的结果显示与参考 SCI 相比有明显差异(p 结论):三种下颌运动跟踪系统在精确度方面都表现出了良好的效果。在真实度方面,KaVo ARCUSdigma 系统和 Modjaw 系统都达到了令人满意的水平,适合在临床环境中应用于数字化义齿修复。不过,要提高 SDiMatriX 系统的真实度,还需要进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of three jaw motion tracking systems: A study on precision and trueness.

Purpose: The purpose of this study was to assess the precision and trueness of three jaw motion tracking systems, the KaVo ARCUSdigma system, SDiMatriX system, and Modjaw system, in recording mandibular movements based on optical and ultrasonic principles.

Materials and methods: Twenty-five healthy subjects were selected for the present study to measure protrosive movement and left and right lateral movements using the three jaw motion tracking systems. Each subject's mandibular movement was recorded twice with a 1-week interval. Five parameters-sagittal condylar inclination (SCI) angle, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle-were acquired for further analysis. The precision of the jaw motion tracking systems was evaluated by comparing the results of two measurements of the same parameter. Simultaneously, cone beam computed tomography (CBCT) was utilized during the initial data acquisition and was aligned with intercuspal position (ICP) and edge-to-edge occlusion intraoral scan data. Bone landmarks were used to calculate bilateral SCI as a reference for comparison with the SCI values from each jaw motion tracking system. An independent-sample t-test was conducted to compare parameter differences, with statistical significance set at a p-value below 0.05.

Results: There were no significant differences among the three jaw motion tracking systems regarding the corrected values of SCI, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle during the 1-week interval (p > 0.05). The values of bilateral SCI obtained by CBCT were 48.57 ± 6.74 (L) and 48.35 ± 5.28 (R), respectively. No significant differences were found between the reference SCI and those parameters measured by the KaVo ARCUSdigma system and the Modjaw system (p > 0.05), while the results obtained from the SDiMatriX system indicated a significant difference compared to the reference SCI (p < 0.05).

Conclusions: The three jaw motion tracking systems exhibited favorable results in terms of precision. Regarding trueness, both the KaVo ARCUSdigma system and the Modjaw system demonstrated a satisfactory levels suitable for applications in digital prosthodontics within clinical settings. However, further refinement is needed to enhance the trueness of the SDiMatriX system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
15.00%
发文量
171
审稿时长
6-12 weeks
期刊介绍: The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信