以新的病毒变种为目标的纳米抗体在结构引导下的体外进化。

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2024-09-26 eCollection Date: 2024-09-01 DOI:10.1371/journal.ppat.1012600
Gang Ye, Fan Bu, Ruangang Pan, Alise Mendoza, Ge Yang, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Stanley Perlman, Bin Liu, Fang Li
{"title":"以新的病毒变种为目标的纳米抗体在结构引导下的体外进化。","authors":"Gang Ye, Fan Bu, Ruangang Pan, Alise Mendoza, Ge Yang, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Stanley Perlman, Bin Liu, Fang Li","doi":"10.1371/journal.ppat.1012600","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure-guided in vitro evolution of nanobodies targeting new viral variants.\",\"authors\":\"Gang Ye, Fan Bu, Ruangang Pan, Alise Mendoza, Ge Yang, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Stanley Perlman, Bin Liu, Fang Li\",\"doi\":\"10.1371/journal.ppat.1012600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012600\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012600","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗病毒抗体疗法面临的一大挑战是如何跟上病毒的快速进化。我们的研究表明,纳米抗体--从驼科动物中提取的单域抗体--可以通过结构引导的体外进化快速重新设计,以对抗新的病毒株。具体来说,对于发生在纳米抗体结合位点的病毒突变,我们会在突变附近的纳米抗体残基中引入随机氨基酸序列。然后,我们从噬菌体展示文库中筛选出能与突变病毒靶点有效结合的纳米抗体变体。作为概念验证,我们用这种方法改造了纳米抗体 Nanosota-3,这种纳米抗体最初被鉴定为针对早期 Omicron 亚变体的受体结合域 (RBD),使其对近期的 Omicron 亚变体非常有效。值得注意的是,这一改造过程可以在不到两周的时间内完成,从而使药物开发能够跟上病毒进化的步伐,及时为人类提供保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-guided in vitro evolution of nanobodies targeting new viral variants.

A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信