{"title":"宿主 ANGPTL2 可建立免疫抑制性肿瘤微环境,并对免疫检查点疗法产生抗药性。","authors":"Shinsei Yumoto, Haruki Horiguchi, Tsuyoshi Kadomatsu, Taichi Horino, Michio Sato, Kazutoyo Terada, Keishi Miyata, Toshiro Moroishi, Hideo Baba, Yuichi Oike","doi":"10.1111/cas.16348","DOIUrl":null,"url":null,"abstract":"<p><p>Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor \"immunophenotypes\" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy.\",\"authors\":\"Shinsei Yumoto, Haruki Horiguchi, Tsuyoshi Kadomatsu, Taichi Horino, Michio Sato, Kazutoyo Terada, Keishi Miyata, Toshiro Moroishi, Hideo Baba, Yuichi Oike\",\"doi\":\"10.1111/cas.16348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor \\\"immunophenotypes\\\" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.</p>\",\"PeriodicalId\":48943,\"journal\":{\"name\":\"Cancer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cas.16348\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.16348","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy.
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.