Prakash Adekkanattu, Al’ona Furmanchuk, Yonghui Wu, Aman Pathak, Braja Gopal Patra, Sarah Bost, Destinee Morrow, Grace Hsin-Min Wang, Yuyang Yang, Noah James Forrest, Yuan Luo, Theresa L. Walunas, Weihsuan Lo-Ciganic, Walid Gelad, Jiang Bian, Yuhua Bao, Mark Weiner, David Oslin, Jyotishman Pathak
{"title":"从电子病历中识别个人和家庭自杀想法和行为史的深度学习","authors":"Prakash Adekkanattu, Al’ona Furmanchuk, Yonghui Wu, Aman Pathak, Braja Gopal Patra, Sarah Bost, Destinee Morrow, Grace Hsin-Min Wang, Yuyang Yang, Noah James Forrest, Yuan Luo, Theresa L. Walunas, Weihsuan Lo-Ciganic, Walid Gelad, Jiang Bian, Yuhua Bao, Mark Weiner, David Oslin, Jyotishman Pathak","doi":"10.1038/s41746-024-01266-7","DOIUrl":null,"url":null,"abstract":"Personal and family history of suicidal thoughts and behaviors (PSH and FSH, respectively) are significant risk factors associated with suicides. Research is limited in automatic identification of such data from clinical notes in Electronic Health Records. This study developed deep learning (DL) tools utilizing transformer models (Bio_ClinicalBERT and GatorTron) to detect PSH and FSH in clinical notes derived from three academic medical centers, and compared their performance with a rule-based natural language processing tool. For detecting PSH, the rule-based approach obtained an F1-score of 0.75 ± 0.07, while the Bio_ClinicalBERT and GatorTron DL tools scored 0.83 ± 0.09 and 0.84 ± 0.07, respectively. For detecting FSH, the rule-based approach achieved an F1-score of 0.69 ± 0.11, compared to 0.89 ± 0.10 for Bio_ClinicalBERT and 0.92 ± 0.07 for GatorTron. Across sites, the DL tools identified more than 80% of patients at elevated risk for suicide who remain undiagnosed and untreated.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-9"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01266-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning for identifying personal and family history of suicidal thoughts and behaviors from EHRs\",\"authors\":\"Prakash Adekkanattu, Al’ona Furmanchuk, Yonghui Wu, Aman Pathak, Braja Gopal Patra, Sarah Bost, Destinee Morrow, Grace Hsin-Min Wang, Yuyang Yang, Noah James Forrest, Yuan Luo, Theresa L. Walunas, Weihsuan Lo-Ciganic, Walid Gelad, Jiang Bian, Yuhua Bao, Mark Weiner, David Oslin, Jyotishman Pathak\",\"doi\":\"10.1038/s41746-024-01266-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal and family history of suicidal thoughts and behaviors (PSH and FSH, respectively) are significant risk factors associated with suicides. Research is limited in automatic identification of such data from clinical notes in Electronic Health Records. This study developed deep learning (DL) tools utilizing transformer models (Bio_ClinicalBERT and GatorTron) to detect PSH and FSH in clinical notes derived from three academic medical centers, and compared their performance with a rule-based natural language processing tool. For detecting PSH, the rule-based approach obtained an F1-score of 0.75 ± 0.07, while the Bio_ClinicalBERT and GatorTron DL tools scored 0.83 ± 0.09 and 0.84 ± 0.07, respectively. For detecting FSH, the rule-based approach achieved an F1-score of 0.69 ± 0.11, compared to 0.89 ± 0.10 for Bio_ClinicalBERT and 0.92 ± 0.07 for GatorTron. Across sites, the DL tools identified more than 80% of patients at elevated risk for suicide who remain undiagnosed and untreated.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01266-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01266-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01266-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Deep learning for identifying personal and family history of suicidal thoughts and behaviors from EHRs
Personal and family history of suicidal thoughts and behaviors (PSH and FSH, respectively) are significant risk factors associated with suicides. Research is limited in automatic identification of such data from clinical notes in Electronic Health Records. This study developed deep learning (DL) tools utilizing transformer models (Bio_ClinicalBERT and GatorTron) to detect PSH and FSH in clinical notes derived from three academic medical centers, and compared their performance with a rule-based natural language processing tool. For detecting PSH, the rule-based approach obtained an F1-score of 0.75 ± 0.07, while the Bio_ClinicalBERT and GatorTron DL tools scored 0.83 ± 0.09 and 0.84 ± 0.07, respectively. For detecting FSH, the rule-based approach achieved an F1-score of 0.69 ± 0.11, compared to 0.89 ± 0.10 for Bio_ClinicalBERT and 0.92 ± 0.07 for GatorTron. Across sites, the DL tools identified more than 80% of patients at elevated risk for suicide who remain undiagnosed and untreated.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.