基于扩展布尔函数的渐近最优非周期性准互补序列集

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bingsheng Shen, Tao Yu, Zhengchun Zhou, Yang Yang
{"title":"基于扩展布尔函数的渐近最优非周期性准互补序列集","authors":"Bingsheng Shen, Tao Yu, Zhengchun Zhou, Yang Yang","doi":"10.1007/s10623-024-01501-y","DOIUrl":null,"url":null,"abstract":"<p>Quasi-complementary sequence sets (QCSSs) are important in modern communication systems as they are capable of supporting more users, which is desired in applications like MC-CDMA nowadays. Although several constructions of aperiodic QCSSs have been proposed in the literature, the known optimal aperiodic QCSSs have limited length or have large alphabet. In this paper, based on extended Boolean functions, we present two constructions of aperiodic QCSSs with parameters <span>\\((q(p_0-1),q,q-t,q)\\)</span> and <span>\\((q^m(p_0-1),q^m,q^m-t,q^m)\\)</span>, where <span>\\(q\\ge 3\\)</span> is an odd integer, <span>\\(p_0\\)</span> is the minimum prime factor of <i>q</i>. The proposed constructions can generate asymptotically optimal or near-optimal aperiodic QCSSs with new parameters.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically optimal aperiodic quasi-complementary sequence sets based on extended Boolean functions\",\"authors\":\"Bingsheng Shen, Tao Yu, Zhengchun Zhou, Yang Yang\",\"doi\":\"10.1007/s10623-024-01501-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quasi-complementary sequence sets (QCSSs) are important in modern communication systems as they are capable of supporting more users, which is desired in applications like MC-CDMA nowadays. Although several constructions of aperiodic QCSSs have been proposed in the literature, the known optimal aperiodic QCSSs have limited length or have large alphabet. In this paper, based on extended Boolean functions, we present two constructions of aperiodic QCSSs with parameters <span>\\\\((q(p_0-1),q,q-t,q)\\\\)</span> and <span>\\\\((q^m(p_0-1),q^m,q^m-t,q^m)\\\\)</span>, where <span>\\\\(q\\\\ge 3\\\\)</span> is an odd integer, <span>\\\\(p_0\\\\)</span> is the minimum prime factor of <i>q</i>. The proposed constructions can generate asymptotically optimal or near-optimal aperiodic QCSSs with new parameters.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01501-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01501-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准互补序列集(QCSS)在现代通信系统中非常重要,因为它们能够支持更多用户,这正是如今 MC-CDMA 等应用所需要的。虽然文献中提出了几种非周期性 QCSS 的构造,但已知的最优非周期性 QCSS 长度有限或字母表较大。本文基于扩展布尔函数,提出了参数为((q(p_0-1),q,q-t,q))和((q^m(p_0-1),q^m,q^m-t,q^m))的两种非周期性 QCSS 结构,其中(q^m(p_0-1),q^m,q^m-t,q^m))为奇整数,(p_0)为 q 的最小质因子。所提出的构造可以生成具有新参数的渐近最优或接近最优的非周期性 QCSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotically optimal aperiodic quasi-complementary sequence sets based on extended Boolean functions

Asymptotically optimal aperiodic quasi-complementary sequence sets based on extended Boolean functions

Quasi-complementary sequence sets (QCSSs) are important in modern communication systems as they are capable of supporting more users, which is desired in applications like MC-CDMA nowadays. Although several constructions of aperiodic QCSSs have been proposed in the literature, the known optimal aperiodic QCSSs have limited length or have large alphabet. In this paper, based on extended Boolean functions, we present two constructions of aperiodic QCSSs with parameters \((q(p_0-1),q,q-t,q)\) and \((q^m(p_0-1),q^m,q^m-t,q^m)\), where \(q\ge 3\) is an odd integer, \(p_0\) is the minimum prime factor of q. The proposed constructions can generate asymptotically optimal or near-optimal aperiodic QCSSs with new parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信