Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu
{"title":"可视化动脉粥样硬化中由免疫检查点抑制剂引发的炎症。","authors":"Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu","doi":"10.1161/circresaha.124.324260","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.\r\n\r\nMETHODS\r\nApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.\r\n\r\nRESULTS\r\nCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.\r\n\r\nCONCLUSIONS\r\nAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"7 1","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis.\",\"authors\":\"Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu\",\"doi\":\"10.1161/circresaha.124.324260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.\\r\\n\\r\\nMETHODS\\r\\nApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.\\r\\n\\r\\nRESULTS\\r\\nCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.\\r\\n\\r\\nCONCLUSIONS\\r\\nAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/circresaha.124.324260\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.124.324260","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis.
BACKGROUND
Immune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.
METHODS
Apoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.
RESULTS
CCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.
CONCLUSIONS
Accelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.