改进布谷鸟搜索算法,智能识别沙子高循环累积模型的参数

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Shao-Heng He, Zhen-Yu Yin, Yifei Sun, Zhi Ding
{"title":"改进布谷鸟搜索算法,智能识别沙子高循环累积模型的参数","authors":"Shao-Heng He,&nbsp;Zhen-Yu Yin,&nbsp;Yifei Sun,&nbsp;Zhi Ding","doi":"10.1002/nag.3838","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach of intelligent parameter identification (IPI) for a high-cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi-opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA-based IPI approach is evaluated by comparing it with the original CSA-based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA-based IPI method is more powerful and efficient in finding optimal parameters.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 18","pages":"4410-4427"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3838","citationCount":"0","resultStr":"{\"title\":\"Intelligent Parameter Identification for a High-Cycle Accumulation Model of Sand With Enhancement of Cuckoo Search Algorithm\",\"authors\":\"Shao-Heng He,&nbsp;Zhen-Yu Yin,&nbsp;Yifei Sun,&nbsp;Zhi Ding\",\"doi\":\"10.1002/nag.3838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a novel approach of intelligent parameter identification (IPI) for a high-cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi-opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA-based IPI approach is evaluated by comparing it with the original CSA-based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA-based IPI method is more powerful and efficient in finding optimal parameters.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"48 18\",\"pages\":\"4410-4427\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3838\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3838","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种针对砂的高循环累积(HCA)模型的智能参数识别(IPI)新方法,它减少了人工参数校准的主观误差,使 HCA 模型的使用更加方便。该技术以最优化理论为基础,采用布谷鸟搜索算法(CSA)。为了提高 CSA 的搜索能力和收敛速度,对其进行了多项改进。首先,改进后的 CSA(ICSA)加入了准位置学习来扩展搜索空间,并用考奇随机游走代替了原来的搜索策略,以提高全局搜索能力。其次,在算法控制参数中引入了自适应缩放因子,以更好地平衡探索速度和精度。第三,在放弃旧巢穴位置后生成新巢穴位置时,使用动态惯性权重来平衡全局和局部空间的搜索。在确定 HCA 模型参数时,将基于 ICSA 的 IPI 方法与基于 CSA 的原始 IPI 方法和人工校准方法进行了比较,从而评估了基于 ICSA 的 IPI 方法的性能。此外,还进行了综合分析,以评估 ICSA 中引入的每种改进策略相对于原始 CSA 的有效性和优越性。所有比较结果表明,所提出的基于 ICSA 的 IPI 方法在寻找最佳参数方面更强大、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent Parameter Identification for a High-Cycle Accumulation Model of Sand With Enhancement of Cuckoo Search Algorithm

Intelligent Parameter Identification for a High-Cycle Accumulation Model of Sand With Enhancement of Cuckoo Search Algorithm

This study presents a novel approach of intelligent parameter identification (IPI) for a high-cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi-opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA-based IPI approach is evaluated by comparing it with the original CSA-based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA-based IPI method is more powerful and efficient in finding optimal parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信