{"title":"改进布谷鸟搜索算法,智能识别沙子高循环累积模型的参数","authors":"Shao‐Heng He, Zhen‐Yu Yin, Yifei Sun, Zhi Ding","doi":"10.1002/nag.3838","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach of intelligent parameter identification (IPI) for a high‐cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi‐opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA‐based IPI approach is evaluated by comparing it with the original CSA‐based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA‐based IPI method is more powerful and efficient in finding optimal parameters.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Parameter Identification for a High‐Cycle Accumulation Model of Sand With Enhancement of Cuckoo Search Algorithm\",\"authors\":\"Shao‐Heng He, Zhen‐Yu Yin, Yifei Sun, Zhi Ding\",\"doi\":\"10.1002/nag.3838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach of intelligent parameter identification (IPI) for a high‐cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi‐opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA‐based IPI approach is evaluated by comparing it with the original CSA‐based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA‐based IPI method is more powerful and efficient in finding optimal parameters.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3838\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3838","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Intelligent Parameter Identification for a High‐Cycle Accumulation Model of Sand With Enhancement of Cuckoo Search Algorithm
This study presents a novel approach of intelligent parameter identification (IPI) for a high‐cycle accumulation (HCA) model of sand, which reduces the subjective errors on manual parameter calibration and makes the use of the HCA model more accessible. The technique is based on optimization theory and adopts the cuckoo search algorithm (CSA). To improve search ability and convergence speed of CSA, several enhancements are implemented. First, the improved CSA (ICSA) incorporates quasi‐opposition learning to expand the search space and replaces the original search strategy with a Cauchy random walk to enhance global search ability. Second, an adaptive scaling factor is introduced in the algorithm's control parameters to achieve a better balance between exploration speed and accuracy. Third, a dynamic inertia weight is used to balance the search between global and local spaces when generating new nest positions after abandoning old ones. The performance of the ICSA‐based IPI approach is evaluated by comparing it with the original CSA‐based IPI and manual calibration in determining the HCA model parameters. A comprehensive analysis is also conducted to assess the effectiveness and superiority of each improvement strategy introduced in the ICSA over the original CSA. All comparisons demonstrate that the proposed ICSA‐based IPI method is more powerful and efficient in finding optimal parameters.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.