Kalaiselvi Seenivasan, Sankarganesh Arunachalam, Tirupathi Pichiah P. B., Sanjay B. Vasan, Meenakshi R. Venkateswaran, Durairaj Siva, Jeeva Gothandam, Shanmugam Achiraman
{"title":"阐明阿霉素诱导的心肌病中 PPAR γ 抑制与能量需求的相互作用:体外和体内视角","authors":"Kalaiselvi Seenivasan, Sankarganesh Arunachalam, Tirupathi Pichiah P. B., Sanjay B. Vasan, Meenakshi R. Venkateswaran, Durairaj Siva, Jeeva Gothandam, Shanmugam Achiraman","doi":"10.1002/jbt.23855","DOIUrl":null,"url":null,"abstract":"<p>Adriamycin is an anticancer anthracycline drug that inhibits the progression of topoisomerase II activity and causes apoptosis. The effective clinical application of the drug is very much limited by its adverse drug reactions on various tissues. Most importantly, Adriamycin causes cardiomyopathy, one of the life-threatening complications of the drug. Altered expression of PPARγ in adipocytes inhibited the glucose and fatty acids uptake by down regulating GLUT4 and CD36 expression and causes cardiotoxicity. Therefore, the influence of Adriamycin in cardiac ailments was investigated in vivo and in vitro. Adriamycin treated rats showed altered ECG profile, arrhythmic heartbeat with the elevated levels of CRP and LDH. Dysregulated lipid profiles with elevated levels of cholesterol and triglycerides were also observed. Possibilities of cardiac problems due to cardiomyopathy were analyzed through histopathology. Adriamycin treated rats showed no signs for atheromatous plaque formation in aorta but disorganized cardiomyocytes with myofibrillar loss and inflammation in heart tissue, indicative of cardiomyopathy. Reduced levels of antioxidant enzymes confirmed the incidence of oxidative stress. Adriamycin treatment significantly reduced glucose and insulin levels, creating energy demand due to decreased glucose and insulin levels with increased fatty acid accumulation, ultimately resulting in oxidative stress mediated cardiomyopathy. Since PPARs play a vital role in regulating oxidative stress, the effect of Adriamycin on PPARγ was analyzed by western blot. Adriamycin downregulated PPARγ in a dose-dependent manner in H9C2 cells in vitro. Overall, our study suggests that Adriamycin alters glucose and lipid metabolism via PPARγ inhibition that leads to oxidative stress and cardiomyopathy that necessitates a different therapeutic approach.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the interplay of PPAR gamma inhibition and energy demand in adriamycin-induced cardiomyopathy: In Vitro and In Vivo perspective\",\"authors\":\"Kalaiselvi Seenivasan, Sankarganesh Arunachalam, Tirupathi Pichiah P. B., Sanjay B. Vasan, Meenakshi R. Venkateswaran, Durairaj Siva, Jeeva Gothandam, Shanmugam Achiraman\",\"doi\":\"10.1002/jbt.23855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adriamycin is an anticancer anthracycline drug that inhibits the progression of topoisomerase II activity and causes apoptosis. The effective clinical application of the drug is very much limited by its adverse drug reactions on various tissues. Most importantly, Adriamycin causes cardiomyopathy, one of the life-threatening complications of the drug. Altered expression of PPARγ in adipocytes inhibited the glucose and fatty acids uptake by down regulating GLUT4 and CD36 expression and causes cardiotoxicity. Therefore, the influence of Adriamycin in cardiac ailments was investigated in vivo and in vitro. Adriamycin treated rats showed altered ECG profile, arrhythmic heartbeat with the elevated levels of CRP and LDH. Dysregulated lipid profiles with elevated levels of cholesterol and triglycerides were also observed. Possibilities of cardiac problems due to cardiomyopathy were analyzed through histopathology. Adriamycin treated rats showed no signs for atheromatous plaque formation in aorta but disorganized cardiomyocytes with myofibrillar loss and inflammation in heart tissue, indicative of cardiomyopathy. Reduced levels of antioxidant enzymes confirmed the incidence of oxidative stress. Adriamycin treatment significantly reduced glucose and insulin levels, creating energy demand due to decreased glucose and insulin levels with increased fatty acid accumulation, ultimately resulting in oxidative stress mediated cardiomyopathy. Since PPARs play a vital role in regulating oxidative stress, the effect of Adriamycin on PPARγ was analyzed by western blot. Adriamycin downregulated PPARγ in a dose-dependent manner in H9C2 cells in vitro. Overall, our study suggests that Adriamycin alters glucose and lipid metabolism via PPARγ inhibition that leads to oxidative stress and cardiomyopathy that necessitates a different therapeutic approach.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23855\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23855","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidating the interplay of PPAR gamma inhibition and energy demand in adriamycin-induced cardiomyopathy: In Vitro and In Vivo perspective
Adriamycin is an anticancer anthracycline drug that inhibits the progression of topoisomerase II activity and causes apoptosis. The effective clinical application of the drug is very much limited by its adverse drug reactions on various tissues. Most importantly, Adriamycin causes cardiomyopathy, one of the life-threatening complications of the drug. Altered expression of PPARγ in adipocytes inhibited the glucose and fatty acids uptake by down regulating GLUT4 and CD36 expression and causes cardiotoxicity. Therefore, the influence of Adriamycin in cardiac ailments was investigated in vivo and in vitro. Adriamycin treated rats showed altered ECG profile, arrhythmic heartbeat with the elevated levels of CRP and LDH. Dysregulated lipid profiles with elevated levels of cholesterol and triglycerides were also observed. Possibilities of cardiac problems due to cardiomyopathy were analyzed through histopathology. Adriamycin treated rats showed no signs for atheromatous plaque formation in aorta but disorganized cardiomyocytes with myofibrillar loss and inflammation in heart tissue, indicative of cardiomyopathy. Reduced levels of antioxidant enzymes confirmed the incidence of oxidative stress. Adriamycin treatment significantly reduced glucose and insulin levels, creating energy demand due to decreased glucose and insulin levels with increased fatty acid accumulation, ultimately resulting in oxidative stress mediated cardiomyopathy. Since PPARs play a vital role in regulating oxidative stress, the effect of Adriamycin on PPARγ was analyzed by western blot. Adriamycin downregulated PPARγ in a dose-dependent manner in H9C2 cells in vitro. Overall, our study suggests that Adriamycin alters glucose and lipid metabolism via PPARγ inhibition that leads to oxidative stress and cardiomyopathy that necessitates a different therapeutic approach.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.