Lp Minkowski 问题的曲率约束

IF 1.5 1区 数学 Q1 MATHEMATICS
Kyeongsu Choi , Minhyun Kim , Taehun Lee
{"title":"Lp Minkowski 问题的曲率约束","authors":"Kyeongsu Choi ,&nbsp;Minhyun Kim ,&nbsp;Taehun Lee","doi":"10.1016/j.aim.2024.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109959"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature bound for Lp Minkowski problem\",\"authors\":\"Kyeongsu Choi ,&nbsp;Minhyun Kim ,&nbsp;Taehun Lee\",\"doi\":\"10.1016/j.aim.2024.109959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109959\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004742\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004742","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了各向异性高斯曲率流的曲率估计。利用这一点,我们证明了给定一个具有正光滑密度 f 的度量 μ,Rn+1 中 p≤-n+2 的 Lp Minkowski 问题的任何解都是类 C1,1 的超曲面。这是一个尖锐的结果,因为对于每个 p∈[-n+2,1),都存在一个 C1,1n+p-1 类的凸超曲面,它是正光滑密度 f 的 Lp Minkowski 问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature bound for Lp Minkowski problem
We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure μ with a positive smooth density f, any solution to the Lp Minkowski problem in Rn+1 with pn+2 is a hypersurface of class C1,1. This is a sharp result because for each p[n+2,1) there exists a convex hypersurface of class C1,1n+p1 which is a solution to the Lp Minkowski problem for a positive smooth density f. In particular, the C1,1 regularity is optimal in the case p=n+2 which includes the logarithmic Minkowski problem in R3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信