{"title":"Lp Minkowski 问题的曲率约束","authors":"Kyeongsu Choi , Minhyun Kim , Taehun Lee","doi":"10.1016/j.aim.2024.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109959"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature bound for Lp Minkowski problem\",\"authors\":\"Kyeongsu Choi , Minhyun Kim , Taehun Lee\",\"doi\":\"10.1016/j.aim.2024.109959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109959\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004742\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004742","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们建立了各向异性高斯曲率流的曲率估计。利用这一点,我们证明了给定一个具有正光滑密度 f 的度量 μ,Rn+1 中 p≤-n+2 的 Lp Minkowski 问题的任何解都是类 C1,1 的超曲面。这是一个尖锐的结果,因为对于每个 p∈[-n+2,1),都存在一个 C1,1n+p-1 类的凸超曲面,它是正光滑密度 f 的 Lp Minkowski 问题的解。
We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure μ with a positive smooth density f, any solution to the Minkowski problem in with is a hypersurface of class . This is a sharp result because for each there exists a convex hypersurface of class which is a solution to the Minkowski problem for a positive smooth density f. In particular, the regularity is optimal in the case which includes the logarithmic Minkowski problem in .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.