{"title":"戴梅利算术近似定理","authors":"Binggang Qu , Hang Yin","doi":"10.1016/j.aim.2024.109961","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.</div><div>As an application, let <span><math><mi>X</mi><mo>/</mo><mi>Q</mi></math></span> be an integral projective variety and <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> be an adelic line bundle on <em>X</em>. We prove that <span><math><mi>ess</mi><mo>(</mo><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>≥</mo><mn>0</mn></math></span> ⟹ <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> pseudo-effective. This was proved in <span><span>[1]</span></span>, assuming <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> relatively semipositive.</div><div>We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of <span><span>[17]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109961"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Demailly approximation theorem\",\"authors\":\"Binggang Qu , Hang Yin\",\"doi\":\"10.1016/j.aim.2024.109961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.</div><div>As an application, let <span><math><mi>X</mi><mo>/</mo><mi>Q</mi></math></span> be an integral projective variety and <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> be an adelic line bundle on <em>X</em>. We prove that <span><math><mi>ess</mi><mo>(</mo><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>≥</mo><mn>0</mn></math></span> ⟹ <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> pseudo-effective. This was proved in <span><span>[1]</span></span>, assuming <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> relatively semipositive.</div><div>We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of <span><span>[17]</span></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109961\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004766\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004766","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作为应用,假设 X/Q 是一个积分射影变项,N‾是 X 上的一个自立线束。我们在附录中证明,在[17]的框架下,上述论断对于准投影变体上的自立线束也是成立的。
We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.
As an application, let be an integral projective variety and be an adelic line bundle on X. We prove that ⟹ pseudo-effective. This was proved in [1], assuming relatively semipositive.
We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of [17].
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.