{"title":"具有 CTLs 反应和趋化作用的空间扩散艾滋病毒模型的全局拟合性和动态性","authors":"Peng Wu","doi":"10.1016/j.matcom.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the global well-posedness and global dynamics of a reaction–diffusion HIV infection model with the chemotactic movement of CTLs (Cytotoxic T lymphocytes). We first show the global existence and uniform boundedness for solutions of the system with general functional incidences. Then, for the model with bilinear incidence rate, we discuss the existence conditions of the three equilibria (infection-free, chemokines-extinct, chemokines-acute equilibria) of the model and obtain the conclusion of the local asymptotic stability of these equilibria by analyzing the linearized system at these equilibria. Moreover, by constructing reasonable Lyapunov functionals, we investigate the global stability and attractivity of the equilibria. Applying the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span> estimate, Young’s inequality, Gagiardo-Nirenberg inequality and the parabolic regularity theorem, we also discuss the convergence rates of the equilibria. Finally, some numerical simulations are conducted to verify the theoretical results.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness and dynamics of spatial diffusion HIV model with CTLs response and chemotaxis\",\"authors\":\"Peng Wu\",\"doi\":\"10.1016/j.matcom.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the global well-posedness and global dynamics of a reaction–diffusion HIV infection model with the chemotactic movement of CTLs (Cytotoxic T lymphocytes). We first show the global existence and uniform boundedness for solutions of the system with general functional incidences. Then, for the model with bilinear incidence rate, we discuss the existence conditions of the three equilibria (infection-free, chemokines-extinct, chemokines-acute equilibria) of the model and obtain the conclusion of the local asymptotic stability of these equilibria by analyzing the linearized system at these equilibria. Moreover, by constructing reasonable Lyapunov functionals, we investigate the global stability and attractivity of the equilibria. Applying the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span> estimate, Young’s inequality, Gagiardo-Nirenberg inequality and the parabolic regularity theorem, we also discuss the convergence rates of the equilibria. Finally, some numerical simulations are conducted to verify the theoretical results.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003744\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003744","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了带有 CTL(细胞毒性 T 淋巴细胞)趋化运动的反应扩散型 HIV 感染模型的全局拟合性和全局动力学。我们首先证明了具有一般函数发生率的系统解的全局存在性和均匀有界性。然后,对于具有双线性发病率的模型,我们讨论了模型的三个平衡点(无感染平衡点、趋化因子-灭绝平衡点、趋化因子-急性平衡点)的存在条件,并通过分析这些平衡点处的线性化系统,得出了这些平衡点的局部渐近稳定性结论。此外,通过构建合理的 Lyapunov 函数,我们还研究了均衡点的全局稳定性和吸引力。应用 Lp-Lq 估计、Young 不等式、Gagiardo-Nirenberg 不等式和抛物线正则定理,我们还讨论了均衡点的收敛率。最后,我们进行了一些数值模拟来验证理论结果。
Global well-posedness and dynamics of spatial diffusion HIV model with CTLs response and chemotaxis
In this paper, we study the global well-posedness and global dynamics of a reaction–diffusion HIV infection model with the chemotactic movement of CTLs (Cytotoxic T lymphocytes). We first show the global existence and uniform boundedness for solutions of the system with general functional incidences. Then, for the model with bilinear incidence rate, we discuss the existence conditions of the three equilibria (infection-free, chemokines-extinct, chemokines-acute equilibria) of the model and obtain the conclusion of the local asymptotic stability of these equilibria by analyzing the linearized system at these equilibria. Moreover, by constructing reasonable Lyapunov functionals, we investigate the global stability and attractivity of the equilibria. Applying the estimate, Young’s inequality, Gagiardo-Nirenberg inequality and the parabolic regularity theorem, we also discuss the convergence rates of the equilibria. Finally, some numerical simulations are conducted to verify the theoretical results.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.