有限数量组合优化的投影梯度下降法

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Xiao-Peng Li , Zhang-Lei Shi , Chi-Sing Leung , Hing Cheung So
{"title":"有限数量组合优化的投影梯度下降法","authors":"Xiao-Peng Li ,&nbsp;Zhang-Lei Shi ,&nbsp;Chi-Sing Leung ,&nbsp;Hing Cheung So","doi":"10.1016/j.jfranklin.2024.107267","DOIUrl":null,"url":null,"abstract":"<div><div>Cardinality-constrained portfolio optimization aims at determining the investment weights on given assets using the historical data. This problem typically requires three constraints, namely, capital budget, long–only, and sparsity. The sparsity restraint allows investment managers to select a small number of stocks from the given assets. Most existing approaches exploit the penalty technique to handle the sparsity constraint. Therefore, they require tweaking the associated regularization parameter to obtain the desired cardinality level, which is time-consuming. This paper formulates the sparse portfolio design as a cardinality-constrained nonconvex optimization problem, where the sparsity constraint is modeled as a bounded <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-norm. The projected gradient descent (PGD) method is then utilized to deal with the resultant problem. Different from existing algorithms, the suggested approach, called <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD, can explicitly control the cardinality level. In addition, its convergence is established. Specifically, the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD guarantees that the objective function value converges, and the variable sequences converges to a local minimum. To remedy the weaknesses of gradient descent, the momentum technique is exploited to enhance the performance of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD, yielding <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PMGD. Numerical results on four real-world datasets, viz. NASDAQ 100, S&amp;P 500, Russell 1000, and Russell 2000 exhibit the superiority of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PMGD over existing algorithms in terms of mean return and Sharpe ratio.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 18","pages":"Article 107267"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projected gradient descent method for cardinality-constrained portfolio optimization\",\"authors\":\"Xiao-Peng Li ,&nbsp;Zhang-Lei Shi ,&nbsp;Chi-Sing Leung ,&nbsp;Hing Cheung So\",\"doi\":\"10.1016/j.jfranklin.2024.107267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardinality-constrained portfolio optimization aims at determining the investment weights on given assets using the historical data. This problem typically requires three constraints, namely, capital budget, long–only, and sparsity. The sparsity restraint allows investment managers to select a small number of stocks from the given assets. Most existing approaches exploit the penalty technique to handle the sparsity constraint. Therefore, they require tweaking the associated regularization parameter to obtain the desired cardinality level, which is time-consuming. This paper formulates the sparse portfolio design as a cardinality-constrained nonconvex optimization problem, where the sparsity constraint is modeled as a bounded <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-norm. The projected gradient descent (PGD) method is then utilized to deal with the resultant problem. Different from existing algorithms, the suggested approach, called <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD, can explicitly control the cardinality level. In addition, its convergence is established. Specifically, the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD guarantees that the objective function value converges, and the variable sequences converges to a local minimum. To remedy the weaknesses of gradient descent, the momentum technique is exploited to enhance the performance of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD, yielding <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PMGD. Numerical results on four real-world datasets, viz. NASDAQ 100, S&amp;P 500, Russell 1000, and Russell 2000 exhibit the superiority of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PGD and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-PMGD over existing algorithms in terms of mean return and Sharpe ratio.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 18\",\"pages\":\"Article 107267\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224006884\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224006884","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

卡性约束投资组合优化旨在利用历史数据确定给定资产的投资权重。这个问题通常需要三个约束条件,即资本预算、长期性和稀疏性。稀疏性约束允许投资经理从给定资产中选择少量股票。大多数现有方法都利用惩罚技术来处理稀疏性约束。因此,这些方法需要调整相关的正则化参数,以获得所需的稀疏性水平,这非常耗时。本文将稀疏投资组合设计表述为一个有卡卡度约束的非凸优化问题,其中的稀疏性约束被建模为一个有界的ℓ0-norm。然后利用投影梯度下降(PGD)方法来处理由此产生的问题。与现有算法不同的是,被称为 ℓ0-PGD 的建议方法可以显式地控制卡片性水平。此外,还确定了其收敛性。具体来说,ℓ0-PGD 保证目标函数值收敛,变量序列收敛到局部最小值。为了弥补梯度下降法的不足,利用动量技术提高了 ℓ0-PGD 的性能,从而得到了 ℓ0-PMGD。在纳斯达克 100 指数、S&P 500 指数、罗素 1000 指数和罗素 2000 指数等四个实际数据集上的数值结果表明,ℓ0-PGD 和 ℓ0-PMGD 在平均收益率和夏普比率方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projected gradient descent method for cardinality-constrained portfolio optimization
Cardinality-constrained portfolio optimization aims at determining the investment weights on given assets using the historical data. This problem typically requires three constraints, namely, capital budget, long–only, and sparsity. The sparsity restraint allows investment managers to select a small number of stocks from the given assets. Most existing approaches exploit the penalty technique to handle the sparsity constraint. Therefore, they require tweaking the associated regularization parameter to obtain the desired cardinality level, which is time-consuming. This paper formulates the sparse portfolio design as a cardinality-constrained nonconvex optimization problem, where the sparsity constraint is modeled as a bounded 0-norm. The projected gradient descent (PGD) method is then utilized to deal with the resultant problem. Different from existing algorithms, the suggested approach, called 0-PGD, can explicitly control the cardinality level. In addition, its convergence is established. Specifically, the 0-PGD guarantees that the objective function value converges, and the variable sequences converges to a local minimum. To remedy the weaknesses of gradient descent, the momentum technique is exploited to enhance the performance of the 0-PGD, yielding 0-PMGD. Numerical results on four real-world datasets, viz. NASDAQ 100, S&P 500, Russell 1000, and Russell 2000 exhibit the superiority of the 0-PGD and 0-PMGD over existing algorithms in terms of mean return and Sharpe ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信