Nrf2:调控胃癌细胞凋亡、铁变态反应和自噬的关键参与者

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
LiJie Tang, DongXiu He, Bo Su
{"title":"Nrf2:调控胃癌细胞凋亡、铁变态反应和自噬的关键参与者","authors":"LiJie Tang,&nbsp;DongXiu He,&nbsp;Bo Su","doi":"10.1016/j.acthis.2024.152203","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear factor erythroid 2-related factor-2 (Nrf2) is a specific transcription factor that maintains redox homeostasis by regulating the expression of anti-oxidative stress-related genes. Hyperactivation of Nrf2 is involved in tumor progression and is associated with chemoresistance in a large number of solid tumors. Programmatic cell death (PCD), such as apoptosis, ferroptosis, and autophagy, plays a crucial role in tumor development and chemotherapy sensitivity. Accumulating evidence suggests that some anti-tumor compounds and genes can induce massive production of reactive oxygen species (ROS) via inhibiting Nrf2 expression, which exacerbates oxidative stress and promotes Gastric cancer (GC) cell death, thereby enhancing the sensitivity of GC cells to chemotherapy-induced PCD. In this review, we summarize the role of antitumor drugs in interfering in three different types of PCD (apoptosis, ferroptosis, and autophagy) in GC cells by modulating Nrf2 expression, as well as the molecular mechanisms through which targeting Nrf2 brings about PCD and chemosensitivity. It is reasonable to believe that Nrf2 serves as a potential therapeutic target, and targeting Nrf2 by drug or gene regulation could provide a new strategy for the treatment of GC.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nrf2: A critical participant in regulation of apoptosis, ferroptosis, and autophagy in gastric cancer\",\"authors\":\"LiJie Tang,&nbsp;DongXiu He,&nbsp;Bo Su\",\"doi\":\"10.1016/j.acthis.2024.152203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nuclear factor erythroid 2-related factor-2 (Nrf2) is a specific transcription factor that maintains redox homeostasis by regulating the expression of anti-oxidative stress-related genes. Hyperactivation of Nrf2 is involved in tumor progression and is associated with chemoresistance in a large number of solid tumors. Programmatic cell death (PCD), such as apoptosis, ferroptosis, and autophagy, plays a crucial role in tumor development and chemotherapy sensitivity. Accumulating evidence suggests that some anti-tumor compounds and genes can induce massive production of reactive oxygen species (ROS) via inhibiting Nrf2 expression, which exacerbates oxidative stress and promotes Gastric cancer (GC) cell death, thereby enhancing the sensitivity of GC cells to chemotherapy-induced PCD. In this review, we summarize the role of antitumor drugs in interfering in three different types of PCD (apoptosis, ferroptosis, and autophagy) in GC cells by modulating Nrf2 expression, as well as the molecular mechanisms through which targeting Nrf2 brings about PCD and chemosensitivity. It is reasonable to believe that Nrf2 serves as a potential therapeutic target, and targeting Nrf2 by drug or gene regulation could provide a new strategy for the treatment of GC.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128124000710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128124000710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

核因子红细胞 2 相关因子-2(Nrf2)是一种特异性转录因子,它通过调节抗氧化应激相关基因的表达来维持氧化还原平衡。Nrf2 的过度激活参与了肿瘤的进展,并与大量实体瘤的化疗耐药性有关。程序性细胞死亡(PCD),如细胞凋亡、铁凋亡和自噬,在肿瘤发生和化疗敏感性中起着至关重要的作用。越来越多的证据表明,一些抗肿瘤化合物和基因可通过抑制Nrf2的表达诱导活性氧(ROS)的大量产生,从而加剧氧化应激并促进胃癌(GC)细胞的死亡,从而提高胃癌细胞对化疗诱导的PCD的敏感性。在这篇综述中,我们总结了抗肿瘤药物通过调节 Nrf2 的表达干扰 GC 细胞三种不同类型的 PCD(凋亡、铁突变和自噬)的作用,以及靶向 Nrf2 带来 PCD 和化疗敏感性的分子机制。我们有理由相信,Nrf2 是一个潜在的治疗靶点,通过药物或基因调控靶向 Nrf2 可为治疗 GC 提供一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nrf2: A critical participant in regulation of apoptosis, ferroptosis, and autophagy in gastric cancer
Nuclear factor erythroid 2-related factor-2 (Nrf2) is a specific transcription factor that maintains redox homeostasis by regulating the expression of anti-oxidative stress-related genes. Hyperactivation of Nrf2 is involved in tumor progression and is associated with chemoresistance in a large number of solid tumors. Programmatic cell death (PCD), such as apoptosis, ferroptosis, and autophagy, plays a crucial role in tumor development and chemotherapy sensitivity. Accumulating evidence suggests that some anti-tumor compounds and genes can induce massive production of reactive oxygen species (ROS) via inhibiting Nrf2 expression, which exacerbates oxidative stress and promotes Gastric cancer (GC) cell death, thereby enhancing the sensitivity of GC cells to chemotherapy-induced PCD. In this review, we summarize the role of antitumor drugs in interfering in three different types of PCD (apoptosis, ferroptosis, and autophagy) in GC cells by modulating Nrf2 expression, as well as the molecular mechanisms through which targeting Nrf2 brings about PCD and chemosensitivity. It is reasonable to believe that Nrf2 serves as a potential therapeutic target, and targeting Nrf2 by drug or gene regulation could provide a new strategy for the treatment of GC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信