Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun
{"title":"可积分耦合非线性薛定谔方程中具有振荡相位背景的矢量孤子的数值研究","authors":"Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun","doi":"10.1016/j.matcom.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations\",\"authors\":\"Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun\",\"doi\":\"10.1016/j.matcom.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003641\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003641","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations
In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.