可积分耦合非线性薛定谔方程中具有振荡相位背景的矢量孤子的数值研究

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun
{"title":"可积分耦合非线性薛定谔方程中具有振荡相位背景的矢量孤子的数值研究","authors":"Lei Liu ,&nbsp;Xuan-Xuan Zhou ,&nbsp;Xi-Yang Xie ,&nbsp;Wen-Rong Sun","doi":"10.1016/j.matcom.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations\",\"authors\":\"Lei Liu ,&nbsp;Xuan-Xuan Zhou ,&nbsp;Xi-Yang Xie ,&nbsp;Wen-Rong Sun\",\"doi\":\"10.1016/j.matcom.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003641\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003641","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文对可积分耦合非线性薛定谔方程中具有振荡相位背景的矢量孤子进行了数值研究,该方程被广泛应用于非线性光脉冲的同步传播和双分量玻色-爱因斯坦凝聚体的动力学等多种物理环境。我们开发了基于变换的时间分割 Chebyshev-Galerkin 方法,以精确计算矢量孤子解。与有限差分法相比,数值实验表明,具有频谱精度和高效率的方法是模拟矢量孤子动力学演化所必需的。结合调制不稳定性条件、线性稳定性分析和直接数值模拟,我们发现在扰动作用下,不同参数组合的明暗孤子和暗暗孤子存在质的差异。特别是在不同波数的不稳定背景下,矢量孤子呈现出截然不同的动力学演变。这些结果有助于我们理解具有振荡相位背景的孤子动力学以及非线性波之间的叠加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations
In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信