粘性液膜在三维扰动下沿斜面流动的稳定性

IF 2.8 3区 工程技术 Q2 MECHANICS
S. Dholey
{"title":"粘性液膜在三维扰动下沿斜面流动的稳定性","authors":"S. Dholey","doi":"10.1016/j.ijnonlinmec.2024.104911","DOIUrl":null,"url":null,"abstract":"<div><div>An analysis is presented for the stability of a viscous liquid film flowing down an inclined plane with respect to three-dimensional disturbances under the action of gravity and surface tension. Using momentum-integral method, the nonlinear free surface evolution equation is derived by introducing the self-similar semiparabolic velocity profiles along the flow (<span><math><mi>x</mi></math></span>- and <span><math><mi>y</mi></math></span>-axis) directions. A normal mode technique and the method of multiple scales are used to obtain the theoretical (linear and nonlinear stability) results of this flow problem, which conceive the physical parameters: Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, Weber number <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>, angle of inclination of the plane <span><math><mi>θ</mi></math></span> and the angle of propagation of the interfacial disturbances <span><math><mi>ϕ</mi></math></span>. The temporal growth rate <span><math><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and second Landau constant <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, based on which various (explosive, supercritical, unconditional, subcritical) stability zones of this flow problem are categorized, contain the shape factors <span><math><mi>B</mi></math></span> and <span><math><mi>β</mi></math></span> owing to the non-zero steady basic flow along the <span><math><mi>y</mi></math></span>-axis direction. A novel result which emerges from the linear stability analysis is that for any given value of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, any stability that arises in two-dimensional disturbances (<span><math><mi>ϕ</mi></math></span> = <span><math><mn>0</mn></math></span>) must also be present in three-dimensional disturbances. For <span><math><mi>ϕ</mi></math></span> = 0, there exists a second explosive unstable zone (instead of unconditional stable zone) after a certain value of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (or <span><math><mi>θ</mi></math></span>) due to the involvement of <span><math><mi>B</mi></math></span> and <span><math><mi>β</mi></math></span> in the expression of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This explosive unstable zone vanishes after a certain value of <span><math><mi>ϕ</mi></math></span> depending upon the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, which confirms the stabilizing influence of <span><math><mi>ϕ</mi></math></span> on the thin film flow dynamics irrespective of the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104911"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of a viscous liquid film flowing down an inclined plane with respect to three-dimensional disturbances\",\"authors\":\"S. Dholey\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An analysis is presented for the stability of a viscous liquid film flowing down an inclined plane with respect to three-dimensional disturbances under the action of gravity and surface tension. Using momentum-integral method, the nonlinear free surface evolution equation is derived by introducing the self-similar semiparabolic velocity profiles along the flow (<span><math><mi>x</mi></math></span>- and <span><math><mi>y</mi></math></span>-axis) directions. A normal mode technique and the method of multiple scales are used to obtain the theoretical (linear and nonlinear stability) results of this flow problem, which conceive the physical parameters: Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, Weber number <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>, angle of inclination of the plane <span><math><mi>θ</mi></math></span> and the angle of propagation of the interfacial disturbances <span><math><mi>ϕ</mi></math></span>. The temporal growth rate <span><math><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and second Landau constant <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, based on which various (explosive, supercritical, unconditional, subcritical) stability zones of this flow problem are categorized, contain the shape factors <span><math><mi>B</mi></math></span> and <span><math><mi>β</mi></math></span> owing to the non-zero steady basic flow along the <span><math><mi>y</mi></math></span>-axis direction. A novel result which emerges from the linear stability analysis is that for any given value of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, any stability that arises in two-dimensional disturbances (<span><math><mi>ϕ</mi></math></span> = <span><math><mn>0</mn></math></span>) must also be present in three-dimensional disturbances. For <span><math><mi>ϕ</mi></math></span> = 0, there exists a second explosive unstable zone (instead of unconditional stable zone) after a certain value of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (or <span><math><mi>θ</mi></math></span>) due to the involvement of <span><math><mi>B</mi></math></span> and <span><math><mi>β</mi></math></span> in the expression of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This explosive unstable zone vanishes after a certain value of <span><math><mi>ϕ</mi></math></span> depending upon the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, which confirms the stabilizing influence of <span><math><mi>ϕ</mi></math></span> on the thin film flow dynamics irrespective of the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"167 \",\"pages\":\"Article 104911\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002762\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002762","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了在重力和表面张力作用下,粘性液膜在三维扰动下沿斜面流动的稳定性。利用动量积分法,通过引入沿流动(x 轴和 y 轴)方向的自相似半抛物线速度剖面,推导出非线性自由表面演化方程。利用法向模态技术和多尺度方法获得了该流动问题的理论(线性和非线性稳定性)结果,其中包含以下物理参数:雷诺数 Re、韦伯数 We、平面倾斜角 θ 和界面扰动传播角 ϕ。时间增长率 ωi+ 和第二朗道常数 J2 是该流动问题各种(爆炸、超临界、无条件、亚临界)稳定区的分类依据,其中包含沿 y 轴方向的非零稳定基本流所产生的形状因子 B 和 β。线性稳定性分析得出的一个新结果是,对于任何给定的 Re、We 和 θ 值,在二维扰动(j = 0)中产生的任何稳定性在三维扰动中也一定存在。对于 ϕ = 0,由于 B 和 β 在 J2 表达式中的参与,在 Re(或 θ)达到一定值后,存在第二个爆炸性不稳定区(而不是无条件稳定区)。根据 Re、We 和 θ 值的不同,爆炸性不稳定区在一定的 ϕ 值之后消失,这证实了 ϕ 对薄膜流动动力学的稳定影响,与 Re、We 和 θ 值无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of a viscous liquid film flowing down an inclined plane with respect to three-dimensional disturbances
An analysis is presented for the stability of a viscous liquid film flowing down an inclined plane with respect to three-dimensional disturbances under the action of gravity and surface tension. Using momentum-integral method, the nonlinear free surface evolution equation is derived by introducing the self-similar semiparabolic velocity profiles along the flow (x- and y-axis) directions. A normal mode technique and the method of multiple scales are used to obtain the theoretical (linear and nonlinear stability) results of this flow problem, which conceive the physical parameters: Reynolds number Re, Weber number We, angle of inclination of the plane θ and the angle of propagation of the interfacial disturbances ϕ. The temporal growth rate ωi+ and second Landau constant J2, based on which various (explosive, supercritical, unconditional, subcritical) stability zones of this flow problem are categorized, contain the shape factors B and β owing to the non-zero steady basic flow along the y-axis direction. A novel result which emerges from the linear stability analysis is that for any given value of Re, We and θ, any stability that arises in two-dimensional disturbances (ϕ = 0) must also be present in three-dimensional disturbances. For ϕ = 0, there exists a second explosive unstable zone (instead of unconditional stable zone) after a certain value of Re (or θ) due to the involvement of B and β in the expression of J2. This explosive unstable zone vanishes after a certain value of ϕ depending upon the values of Re, We and θ, which confirms the stabilizing influence of ϕ on the thin film flow dynamics irrespective of the values of Re, We and θ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信