H.S. Anushree , N. Sowmya , H.C Manjunatha , S. Shubha
{"title":"利用锰射弹合成超重元素 Z>118 所涉及的聚变机制","authors":"H.S. Anushree , N. Sowmya , H.C Manjunatha , S. Shubha","doi":"10.1016/j.nucana.2024.100124","DOIUrl":null,"url":null,"abstract":"<div><div>We conducted an in-depth investigation of Mn-induced fusion reactions aimed at synthesizing superheavy elements with atomic numbers Z=119 to Z=123. Our analysis considers the total potential, which combines Coulomb and nuclear potentials. The nuclear potential was calculated using the Thomas–Fermi approach, a valuable method for modeling the behavior of nucleons in atomic nuclei. within the framework of advanced statistical model, the evaporation residue cross-sections were determined. At optimal energies, we have calculated capture, fusion, and evaporation residue cross-sections for the reactions of all the projectile–target combinations. All <span><math><msup><mrow></mrow><mrow><mn>53</mn><mo>−</mo><mn>55</mn></mrow></msup></math></span>Mn isotopes with larger half-lives were taken into consideration as projectiles. Fusion reactions between <span><math><msup><mrow></mrow><mrow><mn>53</mn><mo>−</mo><mn>55</mn></mrow></msup></math></span>Mn projectiles with <span><math><msup><mrow></mrow><mrow><mn>238</mn><mo>−</mo><mn>242</mn><mo>,</mo><mn>244</mn></mrow></msup></math></span>Pu, <span><math><msup><mrow></mrow><mrow><mn>241</mn><mo>−</mo><mn>243</mn></mrow></msup></math></span>Am, <span><math><msup><mrow></mrow><mrow><mn>242</mn><mo>−</mo><mn>248</mn><mo>,</mo><mn>250</mn></mrow></msup></math></span>Cm, <span><math><msup><mrow></mrow><mrow><mn>247</mn><mo>−</mo><mn>249</mn></mrow></msup></math></span>Bk, and <span><math><msup><mrow></mrow><mrow><mn>248</mn><mo>−</mo><mn>254</mn></mrow></msup></math></span>Cf. Detailed investigations were made and promising reactions viz. <span><math><mrow><msup><mrow></mrow><mrow><mn>241</mn></mrow></msup><mi>Pu</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>293</sup>119, <span><math><mrow><msup><mrow></mrow><mrow><mn>242</mn></mrow></msup><mi>Am</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>294</sup>120, <span><math><mrow><msup><mrow></mrow><mrow><mn>247</mn></mrow></msup><mi>Cm</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>299</sup>121, <span><math><mrow><msup><mrow></mrow><mrow><mn>248</mn></mrow></msup><mi>Bk</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>300</sup>122 and <span><math><mrow><msup><mrow></mrow><mrow><mn>251</mn></mrow></msup><mi>Cf</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>53</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>301</sup>123 with maximum <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>E</mi><mi>R</mi></mrow></msub></math></span> are found to be 415.1 fb at 240 MeV, 115.4 fb at 244 MeV, 36.5 fb at 245 MeV, 13.6 fb at 249 MeV, 5.4 fb at 250 MeV for Z=119-123 respectively. These predictions may help the future experimentalist to explore the 8th row in the periodic table.</div></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":"3 4","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion mechanism involved in the synthesis of superheavy element Z>118 using Mn projectiles\",\"authors\":\"H.S. Anushree , N. Sowmya , H.C Manjunatha , S. Shubha\",\"doi\":\"10.1016/j.nucana.2024.100124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We conducted an in-depth investigation of Mn-induced fusion reactions aimed at synthesizing superheavy elements with atomic numbers Z=119 to Z=123. Our analysis considers the total potential, which combines Coulomb and nuclear potentials. The nuclear potential was calculated using the Thomas–Fermi approach, a valuable method for modeling the behavior of nucleons in atomic nuclei. within the framework of advanced statistical model, the evaporation residue cross-sections were determined. At optimal energies, we have calculated capture, fusion, and evaporation residue cross-sections for the reactions of all the projectile–target combinations. All <span><math><msup><mrow></mrow><mrow><mn>53</mn><mo>−</mo><mn>55</mn></mrow></msup></math></span>Mn isotopes with larger half-lives were taken into consideration as projectiles. Fusion reactions between <span><math><msup><mrow></mrow><mrow><mn>53</mn><mo>−</mo><mn>55</mn></mrow></msup></math></span>Mn projectiles with <span><math><msup><mrow></mrow><mrow><mn>238</mn><mo>−</mo><mn>242</mn><mo>,</mo><mn>244</mn></mrow></msup></math></span>Pu, <span><math><msup><mrow></mrow><mrow><mn>241</mn><mo>−</mo><mn>243</mn></mrow></msup></math></span>Am, <span><math><msup><mrow></mrow><mrow><mn>242</mn><mo>−</mo><mn>248</mn><mo>,</mo><mn>250</mn></mrow></msup></math></span>Cm, <span><math><msup><mrow></mrow><mrow><mn>247</mn><mo>−</mo><mn>249</mn></mrow></msup></math></span>Bk, and <span><math><msup><mrow></mrow><mrow><mn>248</mn><mo>−</mo><mn>254</mn></mrow></msup></math></span>Cf. Detailed investigations were made and promising reactions viz. <span><math><mrow><msup><mrow></mrow><mrow><mn>241</mn></mrow></msup><mi>Pu</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>293</sup>119, <span><math><mrow><msup><mrow></mrow><mrow><mn>242</mn></mrow></msup><mi>Am</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>294</sup>120, <span><math><mrow><msup><mrow></mrow><mrow><mn>247</mn></mrow></msup><mi>Cm</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>299</sup>121, <span><math><mrow><msup><mrow></mrow><mrow><mn>248</mn></mrow></msup><mi>Bk</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>300</sup>122 and <span><math><mrow><msup><mrow></mrow><mrow><mn>251</mn></mrow></msup><mi>Cf</mi></mrow></math></span> (<span><math><mrow><msup><mrow></mrow><mrow><mn>53</mn></mrow></msup><mi>Mn</mi></mrow></math></span>, 3n)<sup>301</sup>123 with maximum <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>E</mi><mi>R</mi></mrow></msub></math></span> are found to be 415.1 fb at 240 MeV, 115.4 fb at 244 MeV, 36.5 fb at 245 MeV, 13.6 fb at 249 MeV, 5.4 fb at 250 MeV for Z=119-123 respectively. These predictions may help the future experimentalist to explore the 8th row in the periodic table.</div></div>\",\"PeriodicalId\":100965,\"journal\":{\"name\":\"Nuclear Analysis\",\"volume\":\"3 4\",\"pages\":\"Article 100124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773183924000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183924000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusion mechanism involved in the synthesis of superheavy element Z>118 using Mn projectiles
We conducted an in-depth investigation of Mn-induced fusion reactions aimed at synthesizing superheavy elements with atomic numbers Z=119 to Z=123. Our analysis considers the total potential, which combines Coulomb and nuclear potentials. The nuclear potential was calculated using the Thomas–Fermi approach, a valuable method for modeling the behavior of nucleons in atomic nuclei. within the framework of advanced statistical model, the evaporation residue cross-sections were determined. At optimal energies, we have calculated capture, fusion, and evaporation residue cross-sections for the reactions of all the projectile–target combinations. All Mn isotopes with larger half-lives were taken into consideration as projectiles. Fusion reactions between Mn projectiles with Pu, Am, Cm, Bk, and Cf. Detailed investigations were made and promising reactions viz. (, 3n)293119, (, 3n)294120, (, 3n)299121, (, 3n)300122 and (, 3n)301123 with maximum are found to be 415.1 fb at 240 MeV, 115.4 fb at 244 MeV, 36.5 fb at 245 MeV, 13.6 fb at 249 MeV, 5.4 fb at 250 MeV for Z=119-123 respectively. These predictions may help the future experimentalist to explore the 8th row in the periodic table.