Zheng Wang , Yuxuan Xue , Rongxin Wang , Jun Wu , Yubiao Zhang , He Xue
{"title":"安全端异种金属焊接接头应力腐蚀裂纹尖端裂纹生长驱动力综述","authors":"Zheng Wang , Yuxuan Xue , Rongxin Wang , Jun Wu , Yubiao Zhang , He Xue","doi":"10.1016/j.nucengdes.2024.113609","DOIUrl":null,"url":null,"abstract":"<div><div>The welded structural materials of nuclear power plants (NPPs) are susceptible to environmentally-assisted cracking (EAC), represented by stress corrosion cracking (SCC), in prolonged high-temperature and high-pressure water environments, posing a significant threat to plant safety. This study aims to provide a critical review for the crack growth driving force at the tip of SCC in the safe end dissimilar metal welded joint (DMWJ) of NPPs. Firstly, SCC’s background, importance, and current research status are introduced. Secondly, a review and analysis are conducted on SCC’s initiation and growth stages, focusing on experimental methods, predictive models of crack growth rate, crack tip mechanical states, and influencing factors, clarifying the main achievements and challenges in current experimental and theoretical research. Finally, a method to mitigate crack tip driving force is proposed, followed by an in-depth analysis from a mechanical perspective on the relationship between crack growth driving force and crack growth resistance, highlighting future research trends. This review provides theoretical references and technical support for addressing the issue of SCC in welded structural materials of NPP primary circuit.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113609"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on crack growth driving force at the tip of stress corrosion cracking in the safe end dissimilar metal welded joint\",\"authors\":\"Zheng Wang , Yuxuan Xue , Rongxin Wang , Jun Wu , Yubiao Zhang , He Xue\",\"doi\":\"10.1016/j.nucengdes.2024.113609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The welded structural materials of nuclear power plants (NPPs) are susceptible to environmentally-assisted cracking (EAC), represented by stress corrosion cracking (SCC), in prolonged high-temperature and high-pressure water environments, posing a significant threat to plant safety. This study aims to provide a critical review for the crack growth driving force at the tip of SCC in the safe end dissimilar metal welded joint (DMWJ) of NPPs. Firstly, SCC’s background, importance, and current research status are introduced. Secondly, a review and analysis are conducted on SCC’s initiation and growth stages, focusing on experimental methods, predictive models of crack growth rate, crack tip mechanical states, and influencing factors, clarifying the main achievements and challenges in current experimental and theoretical research. Finally, a method to mitigate crack tip driving force is proposed, followed by an in-depth analysis from a mechanical perspective on the relationship between crack growth driving force and crack growth resistance, highlighting future research trends. This review provides theoretical references and technical support for addressing the issue of SCC in welded structural materials of NPP primary circuit.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"429 \",\"pages\":\"Article 113609\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002954932400709X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932400709X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Review on crack growth driving force at the tip of stress corrosion cracking in the safe end dissimilar metal welded joint
The welded structural materials of nuclear power plants (NPPs) are susceptible to environmentally-assisted cracking (EAC), represented by stress corrosion cracking (SCC), in prolonged high-temperature and high-pressure water environments, posing a significant threat to plant safety. This study aims to provide a critical review for the crack growth driving force at the tip of SCC in the safe end dissimilar metal welded joint (DMWJ) of NPPs. Firstly, SCC’s background, importance, and current research status are introduced. Secondly, a review and analysis are conducted on SCC’s initiation and growth stages, focusing on experimental methods, predictive models of crack growth rate, crack tip mechanical states, and influencing factors, clarifying the main achievements and challenges in current experimental and theoretical research. Finally, a method to mitigate crack tip driving force is proposed, followed by an in-depth analysis from a mechanical perspective on the relationship between crack growth driving force and crack growth resistance, highlighting future research trends. This review provides theoretical references and technical support for addressing the issue of SCC in welded structural materials of NPP primary circuit.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.