Wanfu Zhao , Yinxian Song , Wei Li , Dongxing Guan , Tao Li , Chao Guo , Ning Wei , Junfeng Ji
{"title":"黑页岩分布区土壤中镉富集的稳定同位素证据","authors":"Wanfu Zhao , Yinxian Song , Wei Li , Dongxing Guan , Tao Li , Chao Guo , Ning Wei , Junfeng Ji","doi":"10.1016/j.apgeochem.2024.106185","DOIUrl":null,"url":null,"abstract":"<div><div>Black shale-derived soils exhibit significant heavy metal enrichment, notably cadmium (Cd) enrichment. This study pioneered the reporting of δ<sup>114</sup>/<sup>110</sup>Cd isotopic values within a black shale-soil system, offering novel insights into the geochemical behaviors and enrichment mechanisms of Cd during soil formation processes influenced by weathering. Systematic rock‒soil sampling was conducted on the lower Cambrian Hetang Formation in western Zhejiang, China, which is characterized by Cd-rich black shale. Employing analytical methods, including principal component analysis and multiple linear regression, we investigated the factors influencing heavy metal content in soil, such as element dissolution during weathering, soil pH, and the presence of iron-manganese oxides, sulfides, organic matter, and clay minerals. Our findings revealed a compositional range of δ<sup>114</sup>/<sup>110</sup>Cd in black shale (1.93‰–3.31‰) contrasting with that in adjacent soils (0.31‰–1.82‰), illustrating significant Cd isotopic fractionation during weathering, where heavier Cd isotopes are preferentially leached, and lighter isotopes are enriched in the soil in association with iron-manganese oxides. This research not only deepens the understanding of Cd enrichment mechanisms within the rock‒soil system against a black shale geological background but also elucidates the formation processes of soil Cd pollution in areas with a high geochemical background.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106185"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable isotopic evidence of cadmium enrichment in soils of black shale distribution areas\",\"authors\":\"Wanfu Zhao , Yinxian Song , Wei Li , Dongxing Guan , Tao Li , Chao Guo , Ning Wei , Junfeng Ji\",\"doi\":\"10.1016/j.apgeochem.2024.106185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Black shale-derived soils exhibit significant heavy metal enrichment, notably cadmium (Cd) enrichment. This study pioneered the reporting of δ<sup>114</sup>/<sup>110</sup>Cd isotopic values within a black shale-soil system, offering novel insights into the geochemical behaviors and enrichment mechanisms of Cd during soil formation processes influenced by weathering. Systematic rock‒soil sampling was conducted on the lower Cambrian Hetang Formation in western Zhejiang, China, which is characterized by Cd-rich black shale. Employing analytical methods, including principal component analysis and multiple linear regression, we investigated the factors influencing heavy metal content in soil, such as element dissolution during weathering, soil pH, and the presence of iron-manganese oxides, sulfides, organic matter, and clay minerals. Our findings revealed a compositional range of δ<sup>114</sup>/<sup>110</sup>Cd in black shale (1.93‰–3.31‰) contrasting with that in adjacent soils (0.31‰–1.82‰), illustrating significant Cd isotopic fractionation during weathering, where heavier Cd isotopes are preferentially leached, and lighter isotopes are enriched in the soil in association with iron-manganese oxides. This research not only deepens the understanding of Cd enrichment mechanisms within the rock‒soil system against a black shale geological background but also elucidates the formation processes of soil Cd pollution in areas with a high geochemical background.</div></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"175 \",\"pages\":\"Article 106185\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292724002907\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724002907","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Stable isotopic evidence of cadmium enrichment in soils of black shale distribution areas
Black shale-derived soils exhibit significant heavy metal enrichment, notably cadmium (Cd) enrichment. This study pioneered the reporting of δ114/110Cd isotopic values within a black shale-soil system, offering novel insights into the geochemical behaviors and enrichment mechanisms of Cd during soil formation processes influenced by weathering. Systematic rock‒soil sampling was conducted on the lower Cambrian Hetang Formation in western Zhejiang, China, which is characterized by Cd-rich black shale. Employing analytical methods, including principal component analysis and multiple linear regression, we investigated the factors influencing heavy metal content in soil, such as element dissolution during weathering, soil pH, and the presence of iron-manganese oxides, sulfides, organic matter, and clay minerals. Our findings revealed a compositional range of δ114/110Cd in black shale (1.93‰–3.31‰) contrasting with that in adjacent soils (0.31‰–1.82‰), illustrating significant Cd isotopic fractionation during weathering, where heavier Cd isotopes are preferentially leached, and lighter isotopes are enriched in the soil in association with iron-manganese oxides. This research not only deepens the understanding of Cd enrichment mechanisms within the rock‒soil system against a black shale geological background but also elucidates the formation processes of soil Cd pollution in areas with a high geochemical background.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.