血红蛋白-aptoglobin 受体 CD163 的缺失会降低肥胖雄性小鼠对胰岛素的敏感性

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2024-09-26 DOI:10.2337/db24-0405
Michael W. Schleh, Magdalene Ameka, Alec Rodriguez, Hasty Alyssa H.
{"title":"血红蛋白-aptoglobin 受体 CD163 的缺失会降低肥胖雄性小鼠对胰岛素的敏感性","authors":"Michael W. Schleh, Magdalene Ameka, Alec Rodriguez, Hasty Alyssa H.","doi":"10.2337/db24-0405","DOIUrl":null,"url":null,"abstract":"Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Further, CD163 deficiency mediated a pro-inflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+CD11B− non-myeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"34 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deficiency of the hemoglobin-haptoglobin receptor, CD163, worsens insulin sensitivity in obese male mice\",\"authors\":\"Michael W. Schleh, Magdalene Ameka, Alec Rodriguez, Hasty Alyssa H.\",\"doi\":\"10.2337/db24-0405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Further, CD163 deficiency mediated a pro-inflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+CD11B− non-myeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0405\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0405","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

脂肪组织、肝脏和骨骼肌等代谢器官中铁的过度积累与糖尿病风险的增加有关。组织驻留巨噬细胞具有多种作用,包括管理炎症调节和调节膳食旁铁平衡,从而在铁超载时防止代谢功能障碍。清道夫受体 CD163 独一无二地存在于组织驻留巨噬细胞上,通过清除细胞外血红蛋白-aptoglobin 复合物,从而限制代谢组织中游离血红蛋白造成的氧化损伤,在铁平衡中发挥着重要作用。我们的研究表明,缺失 CD163 会加剧肥胖雄性小鼠的葡萄糖不耐受和胰岛素抵抗。此外,CD163 的缺失降低了脂肪组织巨噬细胞和抗炎(M2-like)骨髓源性巨噬细胞(BMDMs)中铁调节基因(Tfr1、Cisd1、Slc40a1)的表达。此外,CD163 的缺乏会导致促炎性转变,并限制 M2 样骨髓衍生巨噬细胞的血红蛋白清除能力。为此,体内腹股沟白色脂肪组织(iWAT)巨噬细胞对铁的缓冲作用减弱,最终导致铁溢出到 iWAT 中的脂肪细胞和 CD45+CD11B- 非骨髓免疫细胞。这些研究结果表明,组织驻留巨噬细胞上的 CD163 对其抗炎和清除血红蛋白的作用至关重要,其缺失会导致肥胖情况下全身胰岛素作用受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deficiency of the hemoglobin-haptoglobin receptor, CD163, worsens insulin sensitivity in obese male mice
Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Further, CD163 deficiency mediated a pro-inflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+CD11B− non-myeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信