Sec61α2 转座子在胰岛素生物合成中的作用

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2024-09-26 DOI:10.2337/db24-0115
Xiaoxi Xu, Thomas W. Bell, Truc Le, Ivy Zhao, Emily Walker, Yiqing Wang, Ning Xu, Scott A. Soleimanpour, Holger A. Russ, Ling Qi, Billy Tsai, Ming Liu, Peter Arvan
{"title":"Sec61α2 转座子在胰岛素生物合成中的作用","authors":"Xiaoxi Xu, Thomas W. Bell, Truc Le, Ivy Zhao, Emily Walker, Yiqing Wang, Ning Xu, Scott A. Soleimanpour, Holger A. Russ, Ling Qi, Billy Tsai, Ming Liu, Peter Arvan","doi":"10.2337/db24-0115","DOIUrl":null,"url":null,"abstract":"Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprised of α, β, and γ subunits). The actual protein-conducting channel is the α–subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2-translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nacent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis, but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"39 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Sec61α2 translocon in insulin biosynthesis\",\"authors\":\"Xiaoxi Xu, Thomas W. Bell, Truc Le, Ivy Zhao, Emily Walker, Yiqing Wang, Ning Xu, Scott A. Soleimanpour, Holger A. Russ, Ling Qi, Billy Tsai, Ming Liu, Peter Arvan\",\"doi\":\"10.2337/db24-0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprised of α, β, and γ subunits). The actual protein-conducting channel is the α–subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2-translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nacent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis, but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0115\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0115","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

胰腺β细胞中前胰岛素生物合成的转运调控尚不清楚,但一些研究报告称,转运体相关蛋白复合物发挥了重要的辅助作用,通过异源三聚体Sec61转运体(由α、β和γ亚基组成)将前胰岛素输送到内质网。实际的蛋白质传导通道是由 Sec61A1 或其同源物 Sec61A2 编码的 α 亚基。尽管前胰岛素转运的潜在通道选择性尚不清楚,但迄今为止几乎所有关于 Sec61α 的研究都集中在 Sec61α1 上。目前还没有证据表明该基因产物在前胰岛素的产生中起主要作用,而全基因组关联研究表明 Sec61A2 与糖尿病有关。在这里,我们报告了小鼠前胰岛素信号肽的进化差异会影响前胰岛素的生物合成。此外,我们还发现,尽管一些前胰岛素可通过 Sec61α1 进行转位,但 Sec61α2 对胰岛β细胞中的前胰岛素生物合成影响更大。值得注意的是,Sec61α2-转运体缺乏会对前胰岛素本身的生物合成产生显著的抑制作用,包括不成比例地增加未从核糖体释放的全长nacent链。这项研究不仅揭示了对前胰岛素生物合成的新型转运调控,还为遗传学证据表明 Sec61α2 在维持血糖稳态中的重要作用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Sec61α2 translocon in insulin biosynthesis
Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprised of α, β, and γ subunits). The actual protein-conducting channel is the α–subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2-translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nacent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis, but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信