通过全散射阐明 Li1+xAlxTi2-x(PO4)3 和 Li3AlxTi2-x(PO4)3 (x = 0, 0.3) 的局部结构

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Matthew Simon Chambers, Jue Liu, Olaf Borkiewicz, Kevin Llopart, Robert Lee Sacci, Gabriel M. Veith
{"title":"通过全散射阐明 Li1+xAlxTi2-x(PO4)3 和 Li3AlxTi2-x(PO4)3 (x = 0, 0.3) 的局部结构","authors":"Matthew Simon Chambers, Jue Liu, Olaf Borkiewicz, Kevin Llopart, Robert Lee Sacci, Gabriel M. Veith","doi":"10.1039/d4qi01545b","DOIUrl":null,"url":null,"abstract":"Li<small><sub>1+x</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (LATP) and Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO4)3 (<em>x</em> = 0, 0.3) are promising candidates in all-solid-state batteries due to their high room temperature conductivity of 10<small><sup>–3</sup></small> S cm<small><sup>–1</sup></small> and air- and moisture-stability. They also exhibit unusual thermal expansion properties, with Li<small><sub>1+<em>x</em></sub></small>Al<small><sub><em>x</em></sub></small>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> showing near-zero thermal expansion along the <em>a</em> axis while Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> exhibits polynomial positive thermal expansion along the <em>a</em> axis and polynomial negative thermal expansion along the <em>c</em> axis. A crucial component to understanding these properties is understanding the local structure. Total scattering is a powerful analytical technique as it provides information on the long-range, average structure as well as the local structure. Here, we report the first X-ray and neutron total scattering experiments performed on Li<small><sub>1+<em>x</em></sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (<em>x</em> = 0, 0.3). We show that the PO<small><sub>4</sub></small> and TiO<small><sub>6</sub></small> polyhedra experience very little expansion of the P/Ti–O bonds up to 800 °C, nor is there much expansion when the Li content increases significantly. The minor thermal expansion of the nearest-neighbor bonds of the polyhedra is revealed to be the reason behind the unusual thermal expansion properties, causing the near-zero thermal expansion along <em>a</em> in Li<small><sub>1<em>+x</em></sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and moving as whole units in Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>. The structural robustness of the framework is also the reason for the increased conductivity as Li content increases, as the framework remains undistorted as Li content increases, permitting Li-ion mobility as the number of charge carriers increases. This suggests that phosphate-based framework materials beyond LATP would also be a good material space to explore for new Li-ion (and other ion-) conducting materials.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the local structure of Li1+xAlxTi2–x(PO4)3 and Li3AlxTi2–x(PO4)3 (x = 0, 0.3) via total scattering\",\"authors\":\"Matthew Simon Chambers, Jue Liu, Olaf Borkiewicz, Kevin Llopart, Robert Lee Sacci, Gabriel M. Veith\",\"doi\":\"10.1039/d4qi01545b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li<small><sub>1+x</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (LATP) and Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO4)3 (<em>x</em> = 0, 0.3) are promising candidates in all-solid-state batteries due to their high room temperature conductivity of 10<small><sup>–3</sup></small> S cm<small><sup>–1</sup></small> and air- and moisture-stability. They also exhibit unusual thermal expansion properties, with Li<small><sub>1+<em>x</em></sub></small>Al<small><sub><em>x</em></sub></small>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> showing near-zero thermal expansion along the <em>a</em> axis while Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> exhibits polynomial positive thermal expansion along the <em>a</em> axis and polynomial negative thermal expansion along the <em>c</em> axis. A crucial component to understanding these properties is understanding the local structure. Total scattering is a powerful analytical technique as it provides information on the long-range, average structure as well as the local structure. Here, we report the first X-ray and neutron total scattering experiments performed on Li<small><sub>1+<em>x</em></sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (<em>x</em> = 0, 0.3). We show that the PO<small><sub>4</sub></small> and TiO<small><sub>6</sub></small> polyhedra experience very little expansion of the P/Ti–O bonds up to 800 °C, nor is there much expansion when the Li content increases significantly. The minor thermal expansion of the nearest-neighbor bonds of the polyhedra is revealed to be the reason behind the unusual thermal expansion properties, causing the near-zero thermal expansion along <em>a</em> in Li<small><sub>1<em>+x</em></sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and moving as whole units in Li<small><sub>3</sub></small>Al<em><small><sub>x</sub></small></em>Ti<small><sub>2–<em>x</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>. The structural robustness of the framework is also the reason for the increased conductivity as Li content increases, as the framework remains undistorted as Li content increases, permitting Li-ion mobility as the number of charge carriers increases. This suggests that phosphate-based framework materials beyond LATP would also be a good material space to explore for new Li-ion (and other ion-) conducting materials.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01545b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01545b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

Li1+xAlxTi2-x(PO4)3(LATP)和 Li3AlxTi2-x(PO4)3(x = 0,0.3)具有 10-3 S cm-1 的高室温电导率以及空气和湿气稳定性,是全固态电池的理想候选材料。它们还表现出不同寻常的热膨胀特性,Li1+xAlxTi2-x(PO4)3 沿 a 轴表现出近乎零的热膨胀,而 Li3AlxTi2-x(PO4)3沿 a 轴表现出多项式正热膨胀,沿 c 轴表现出多项式负热膨胀。要了解这些性质,关键在于了解局部结构。全散射是一种强大的分析技术,因为它提供了长程平均结构和局部结构的信息。在此,我们首次报告了对 Li1+xAlxTi2-x(PO4)3 和 Li3AlxTi2-x(PO4)3 (x = 0, 0.3) 进行的 X 射线和中子全散射实验。实验结果表明,PO4 和 TiO6 多面体的 P/Ti-O 键在 800 °C 以下几乎没有膨胀,而当锂含量显著增加时,膨胀也不大。多面体近邻键的微小热膨胀被揭示为非同寻常的热膨胀特性背后的原因,导致 Li1+xAlxTi2-x(PO4)3 中沿 a 的热膨胀接近零,而 Li3AlxTi2-x(PO4)3 中则作为整体单元移动。 框架结构的稳健性也是随着锂含量的增加而增加导电性的原因,因为随着锂含量的增加,框架保持不变形,允许锂离子随着电荷载体数量的增加而移动。这表明,除了 LATP 之外,磷酸盐基框架材料也是探索新型锂离子(和其他离子)导电材料的良好材料空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating the local structure of Li1+xAlxTi2–x(PO4)3 and Li3AlxTi2–x(PO4)3 (x = 0, 0.3) via total scattering
Li1+xAlxTi2–x(PO4)3 (LATP) and Li3AlxTi2–x(PO4)3 (x = 0, 0.3) are promising candidates in all-solid-state batteries due to their high room temperature conductivity of 10–3 S cm–1 and air- and moisture-stability. They also exhibit unusual thermal expansion properties, with Li1+xAlxTi2–x(PO4)3 showing near-zero thermal expansion along the a axis while Li3AlxTi2–x(PO4)3 exhibits polynomial positive thermal expansion along the a axis and polynomial negative thermal expansion along the c axis. A crucial component to understanding these properties is understanding the local structure. Total scattering is a powerful analytical technique as it provides information on the long-range, average structure as well as the local structure. Here, we report the first X-ray and neutron total scattering experiments performed on Li1+xAlxTi2–x(PO4)3 and Li3AlxTi2–x(PO4)3 (x = 0, 0.3). We show that the PO4 and TiO6 polyhedra experience very little expansion of the P/Ti–O bonds up to 800 °C, nor is there much expansion when the Li content increases significantly. The minor thermal expansion of the nearest-neighbor bonds of the polyhedra is revealed to be the reason behind the unusual thermal expansion properties, causing the near-zero thermal expansion along a in Li1+xAlxTi2–x(PO4)3 and moving as whole units in Li3AlxTi2–x(PO4)3. The structural robustness of the framework is also the reason for the increased conductivity as Li content increases, as the framework remains undistorted as Li content increases, permitting Li-ion mobility as the number of charge carriers increases. This suggests that phosphate-based framework materials beyond LATP would also be a good material space to explore for new Li-ion (and other ion-) conducting materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信