Xinxin Guo, Mengmeng Zhou, Ziwu Liu, Shiheng Mu, Kaijia Wang, Huanqiang Shi, Fang Wang, Shijian Lu, Zhonghai Ni and Guiqing Liu
{"title":"在碱性介质中具有出色水电解性能的高熵铁钴锰铜镍二硒化物自立电极","authors":"Xinxin Guo, Mengmeng Zhou, Ziwu Liu, Shiheng Mu, Kaijia Wang, Huanqiang Shi, Fang Wang, Shijian Lu, Zhonghai Ni and Guiqing Liu","doi":"10.1039/D4QI01835D","DOIUrl":null,"url":null,"abstract":"<p >Developing non-noble metal efficient electrocatalysts with high activity and stability is extremely essential for hydrogen generation by water electrolysis with low cost. Herein, we report a novel binder-free high-entropy self-standing electrode with a unique three-dimensional structure and petunia-, needle- and fork-like morphology prepared by the hydrothermal and selenization methods. Due to high entropy, lattice distortion and high-curvature tip-enhancement effects, the prepared FeCoMnCuNiSe<small><sub>2</sub></small> with an ultralow overpotential of 71.6 mV at 100 mA cm<small><sup>−2</sup></small> exhibited superior activity for the hydrogen evolution reaction (HER) in 1.0 M KOH solution, far outperforming almost all reported advanced non-noble metal HER catalysts. More impressively, the assembled FeCoMnCuNiSe<small><sub>2</sub></small>||FeCoMnCuNiSe<small><sub>2</sub></small> overall-water splitting device with more than 45 h of continuous operational stability at 10, 20 and 50 mA cm<small><sup>−2</sup></small> in 1.0 M KOH required a remarkably low cell voltage of 1.30 V at 10 mA cm<small><sup>−2</sup></small> as well, demonstrating a promising practical application prospect in future water electrolysis.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 22","pages":" 7936-7946"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-entropy FeCoMnCuNi diselenide self-standing electrode with outstanding water-electrolysis performance in alkaline medium†\",\"authors\":\"Xinxin Guo, Mengmeng Zhou, Ziwu Liu, Shiheng Mu, Kaijia Wang, Huanqiang Shi, Fang Wang, Shijian Lu, Zhonghai Ni and Guiqing Liu\",\"doi\":\"10.1039/D4QI01835D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing non-noble metal efficient electrocatalysts with high activity and stability is extremely essential for hydrogen generation by water electrolysis with low cost. Herein, we report a novel binder-free high-entropy self-standing electrode with a unique three-dimensional structure and petunia-, needle- and fork-like morphology prepared by the hydrothermal and selenization methods. Due to high entropy, lattice distortion and high-curvature tip-enhancement effects, the prepared FeCoMnCuNiSe<small><sub>2</sub></small> with an ultralow overpotential of 71.6 mV at 100 mA cm<small><sup>−2</sup></small> exhibited superior activity for the hydrogen evolution reaction (HER) in 1.0 M KOH solution, far outperforming almost all reported advanced non-noble metal HER catalysts. More impressively, the assembled FeCoMnCuNiSe<small><sub>2</sub></small>||FeCoMnCuNiSe<small><sub>2</sub></small> overall-water splitting device with more than 45 h of continuous operational stability at 10, 20 and 50 mA cm<small><sup>−2</sup></small> in 1.0 M KOH required a remarkably low cell voltage of 1.30 V at 10 mA cm<small><sup>−2</sup></small> as well, demonstrating a promising practical application prospect in future water electrolysis.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 22\",\"pages\":\" 7936-7946\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01835d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01835d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
开发高活性、高稳定性的非贵金属高效电催化剂对于低成本电解水制氢至关重要。在此,我们报告了一种新型的无粘结剂高熵自立电极,它具有独特的三维结构和牵牛花状、针状和叉状形貌,由水热法和硒化法制备而成。由于高熵效应、晶格畸变和高曲率尖端增强效应,电化学测试表明,制备的 FeCoMnCuNiSe2 在 100 mA cm-2 条件下具有 71.6 mV 的超低过电位,在 1.0 M KOH 溶液中的氢进化反应(HER)中表现出卓越的活性,远远超过几乎所有已报道的先进非贵金属 HER 催化剂。更令人印象深刻的是,所组装的 FeCoMnCuNiSe2|||FeCoMnCuNiSe2整体水分离装置在 1.0 M KOH 溶液中以 10、20 和 50 mA cm-2 的电流持续稳定运行 45 小时以上,在 10 mA cm-2 的电流下所需的电池电压也非常低,仅为 1.30 V,这表明该装置在未来水电解领域具有广阔的实际应用前景。
A high-entropy FeCoMnCuNi diselenide self-standing electrode with outstanding water-electrolysis performance in alkaline medium†
Developing non-noble metal efficient electrocatalysts with high activity and stability is extremely essential for hydrogen generation by water electrolysis with low cost. Herein, we report a novel binder-free high-entropy self-standing electrode with a unique three-dimensional structure and petunia-, needle- and fork-like morphology prepared by the hydrothermal and selenization methods. Due to high entropy, lattice distortion and high-curvature tip-enhancement effects, the prepared FeCoMnCuNiSe2 with an ultralow overpotential of 71.6 mV at 100 mA cm−2 exhibited superior activity for the hydrogen evolution reaction (HER) in 1.0 M KOH solution, far outperforming almost all reported advanced non-noble metal HER catalysts. More impressively, the assembled FeCoMnCuNiSe2||FeCoMnCuNiSe2 overall-water splitting device with more than 45 h of continuous operational stability at 10, 20 and 50 mA cm−2 in 1.0 M KOH required a remarkably low cell voltage of 1.30 V at 10 mA cm−2 as well, demonstrating a promising practical application prospect in future water electrolysis.