使用狄拉克符号对量子现象进行数学感知:对中学生光子功能思维的影响

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Fabian Hennig, Kristóf Tóth, Joaquin Veith, Philipp Bitzenbauer
{"title":"使用狄拉克符号对量子现象进行数学感知:对中学生光子功能思维的影响","authors":"Fabian Hennig,&nbsp;Kristóf Tóth,&nbsp;Joaquin Veith,&nbsp;Philipp Bitzenbauer","doi":"10.1140/epjqt/s40507-024-00274-6","DOIUrl":null,"url":null,"abstract":"<div><p>Previous research has consistently demonstrated that students often possess an inadequate understanding of fundamental quantum optics concepts, even after formal instruction. Findings from physics education research suggest that introducing a mathematical formalism to describe quantum optical phenomena may enhance students’ conceptual understanding of quantum optics. This paper investigates whether using formal descriptions of quantum optics phenomena – such as photon anticorrelation at a beamsplitter or single-photon interference in a Michelson interferometer – expressed in Dirac notation, can support secondary school students in developing functional thinking about photons. To investigate this, we conducted a clusterrandomized field study, comparing the improvement in functional thinking between 67 students in the intervention group, who were taught using both qualitative and quantitative reasoning, and 66 students in the control group, who were taught using only qualitative reasoning. The results indicate that mathematical formalism can indeed promote functional thinking about photons. However, the comparison between the intervention and control groups revealed that the control group exhibited a greater increase in functional thinking than the intervention group. In response to these findings, we conducted a follow-up study aimed at gaining a deeper understanding of the cognitive load associated with both approaches. Specifically, we compared the intrinsic and extraneous cognitive load of 71 students in the intervention group with those of 65 students in the control group. The data analysis revealed that the two groups had statistically significant differences in intrinsic cognitive load while the extraneous cognitive load did not difer statistically significant, indicating a higher mental effort associated to the quantitative reasoning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00274-6","citationCount":"0","resultStr":"{\"title\":\"Mathematical sense making of quantum phenomena using Dirac notation: its effect on secondary school students’ functional thinking about photons\",\"authors\":\"Fabian Hennig,&nbsp;Kristóf Tóth,&nbsp;Joaquin Veith,&nbsp;Philipp Bitzenbauer\",\"doi\":\"10.1140/epjqt/s40507-024-00274-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous research has consistently demonstrated that students often possess an inadequate understanding of fundamental quantum optics concepts, even after formal instruction. Findings from physics education research suggest that introducing a mathematical formalism to describe quantum optical phenomena may enhance students’ conceptual understanding of quantum optics. This paper investigates whether using formal descriptions of quantum optics phenomena – such as photon anticorrelation at a beamsplitter or single-photon interference in a Michelson interferometer – expressed in Dirac notation, can support secondary school students in developing functional thinking about photons. To investigate this, we conducted a clusterrandomized field study, comparing the improvement in functional thinking between 67 students in the intervention group, who were taught using both qualitative and quantitative reasoning, and 66 students in the control group, who were taught using only qualitative reasoning. The results indicate that mathematical formalism can indeed promote functional thinking about photons. However, the comparison between the intervention and control groups revealed that the control group exhibited a greater increase in functional thinking than the intervention group. In response to these findings, we conducted a follow-up study aimed at gaining a deeper understanding of the cognitive load associated with both approaches. Specifically, we compared the intrinsic and extraneous cognitive load of 71 students in the intervention group with those of 65 students in the control group. The data analysis revealed that the two groups had statistically significant differences in intrinsic cognitive load while the extraneous cognitive load did not difer statistically significant, indicating a higher mental effort associated to the quantitative reasoning.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00274-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00274-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00274-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究一直表明,即使经过正规的教学,学生对量子光学基本概念的理解也往往不够。物理教育研究结果表明,引入数学形式主义来描述量子光学现象可能会增强学生对量子光学概念的理解。本文研究了用狄拉克符号表示的量子光学现象的形式化描述--如分光镜中的光子反相关或迈克尔逊干涉仪中的单光子干涉--能否帮助中学生发展有关光子的功能性思维。为了研究这一点,我们进行了一项分组随机实地研究,比较了同时使用定性和定量推理教学的干预组 67 名学生和仅使用定性推理教学的对照组 66 名学生在功能思维方面的进步。结果表明,数学形式主义确实可以促进有关光子的功能性思维。然而,通过对干预组和对照组的比较发现,对照组的功能性思维比干预组有更大的提高。针对这些发现,我们进行了一项后续研究,旨在更深入地了解这两种方法的认知负荷。具体来说,我们比较了干预组 71 名学生和对照组 65 名学生的内在和外在认知负荷。数据分析显示,两组学生的内在认知负荷在统计学上有显著差异,而外在认知负荷在统计学上没有显著差异,这表明与定量推理相关的脑力劳动更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical sense making of quantum phenomena using Dirac notation: its effect on secondary school students’ functional thinking about photons

Previous research has consistently demonstrated that students often possess an inadequate understanding of fundamental quantum optics concepts, even after formal instruction. Findings from physics education research suggest that introducing a mathematical formalism to describe quantum optical phenomena may enhance students’ conceptual understanding of quantum optics. This paper investigates whether using formal descriptions of quantum optics phenomena – such as photon anticorrelation at a beamsplitter or single-photon interference in a Michelson interferometer – expressed in Dirac notation, can support secondary school students in developing functional thinking about photons. To investigate this, we conducted a clusterrandomized field study, comparing the improvement in functional thinking between 67 students in the intervention group, who were taught using both qualitative and quantitative reasoning, and 66 students in the control group, who were taught using only qualitative reasoning. The results indicate that mathematical formalism can indeed promote functional thinking about photons. However, the comparison between the intervention and control groups revealed that the control group exhibited a greater increase in functional thinking than the intervention group. In response to these findings, we conducted a follow-up study aimed at gaining a deeper understanding of the cognitive load associated with both approaches. Specifically, we compared the intrinsic and extraneous cognitive load of 71 students in the intervention group with those of 65 students in the control group. The data analysis revealed that the two groups had statistically significant differences in intrinsic cognitive load while the extraneous cognitive load did not difer statistically significant, indicating a higher mental effort associated to the quantitative reasoning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信